
- •Конспект лекций
- •2014 Электромагнитное поле
- •Электрические и магнитные поля не существуют обособленно (независимо), т.К. Порождают друг друга. Электротехнические материалЫ
- •Классификация электротехнических материалов.
- •Электрические свойства и характеристики материалов (общие)
- •Электрические свойства и характеристики материалов (для диэлектриков)
- •Тепловые свойства и характеристики материалов
- •Тепловые характеристики твёрдых материалов.
- •Тепловые характеристики жидких материалов.
- •При температурах, близких или больших критических температур материал, применять нельзя. Тепловые характеристики материалов общие.
- •Физико-химические свойства и характеристики материалов
- •Физико-химические характеристики твёрдых материалов.
- •Физико-химические характеристики жидких материалов.
- •Классификация проводниковых материалов
- •Электропроводность проводниковых материалов Электропроводность твёрдых проводников.
- •Факторы, влияющие на электропроводность твёрдых проводников.
- •Проводниковые материалы высокой проводимости
- •Проводниковые материалы с большим удельным сопротивлением
- •Металлокерамические материалы и изделия
- •Получение металлокерамического материала.
- •Металлокерамические изделия.
- •Описанные способы получения материалов относятся к порошковой металлургии.
- •Получение электроугольного материала.
- •Электроугольные изделия.
- •Контакты и контактные материалы
- •Износ (разрушение) контактов.
- •Классификация электрических контактов.
- •Припои и флюсы
- •Подбор припоев и флюсов.
- •Маркировка припоев
- •Классификация полупроводниковых материалов
- •Электропроводность полупроводниковых материалов Электропроводность полупроводников.
- •Факторы, влияющие на электропроводность полупроводников.
- •Электронно-дырочный переход (p-n-переход)
- •Получение p-n-перехода.
- •Работа p-n-перехода.
- •Воль - амперная характеристика (вах) p-n-перехода.
- •Полупроводниковые материалы
- •Классификация диэлектрических материалов
- •Электропроводность и пробой газообразных диэлектриков Электропроводность газообразных диэлектриков.
- •Пробой газообразных диэлектриков.
- •Электропроводность и пробой жидких диэлектриков Электропроводность жидких диэлектриков.
- •Пробой жидких диэлектриков.
- •Пробой твёрдых диэлектриков.
- •Твёрдые полимеризационные диэлектрики
- •Твёрдые поликонденсационные диэлектрики
- •Нагревостойкие высокополимерные диэлектрики
- •Электроизоляционные резины Основные компоненты электроизоляционных резин.
- •Лаки и эмали
- •Основные компоненты лаков.
- •Компаунды
- •Бумаги и катроны
- •Лакоткани и изделия
- •Тканевые основы.
- •Изделия из лакотканей.
- •Пластмассы
- •Компоненты пластмасс.
- •Выбирая состав и количество компонентов можно поучить изделия с теми или иными механическими, тепловыми и диэлектрическими свойствами.
- •Электроизоляционная слюда и слюдяные материалы Электроизоляционная слюда.
- •Слюдяные материалы.
- •Силикатные и электрокерамические материалы Силикатные материалы.
- •Обмоточные, монтажные и установочные провода
- •Маркировка проводов
- •Конструкция силовых кабелей.
- •Маркировка силовых кабелей
- •Классификация магнитных материалов
- •Магнитные свойства и характеристики материалов
- •Магнитомягкие материалы
- •Магнитотвёрдые материалы
Электропроводность и пробой жидких диэлектриков Электропроводность жидких диэлектриков.
Чистые жидкие диэлектрики обладают электропроводимостью обусловленной перемещением в них ионов, которые образуются в результате диссоциации (распада) молекул примесей (воды, кислот и др.), а частично и молекул самого диэлектрика.
Загрязнённые жидкие диэлектрики, находящиеся в эксплуатации, кроме ионной электропроводимости обладают ещё и моллионной. Она обусловлена перемещением электрически заряженных коллоидных (диаметр частицы 10-6 м) частиц воды, смолистых веществ и примесей, образующихся в результате старения диэлектрика.
Все масла в процессе их эксплуатации находятся под воздействием повышенных температур, электрического поля, а также соприкасаются с металлическими частями электрооборудования, а в некотором электрооборудовании соприкасаются с атмосферным воздухом. Это вызывает старение масла, в основе которого лежит окисление. При старении в масле образуются твёрдые смолообразные примеси, нерастворимые и растворимые в горячем масле, которые выпадаю в виде осадка на обмотках и других частях, которые затрудняют теплоотвод. В процессе старения в масле образуются кислоты и влага.
Что бы замедлить старение масел, в них водят вещества, задерживающие окисление (ионол 0,1-0,5%, замедляет старение в 2-3 раза) – ингибиторы. Однако присадка ингибиторов не может полностью предохранить масло от старения.
Электроизоляционные масла, следует хранить и перевозить в сухой герметичной таре, перекачивать по чистым металлическим трубопроводам (резиновые шланги растворяясь, загрязняют масло). В процессе эксплуатации масло необходимо защищать от проникновения в него воздуха и влаги.
С повышение температуры увеличивается количество и подвижность носителей заряда (уменьшается вязкость масла) и электропроводность увеличивается.
Пробой жидких диэлектриков.
Газовые включения и коллоидные частички воды, имеющие сферическую форму, под действием электрического поля деформируются, превращаются в эллипсоидные вращения, удлиняются и сливаются, образуя сплошной канал между электродами (“мостики”) по которому проходит электрический заряд, т.е. происходит пробой. Коллоидные частички воды кроме того поляризуются и притягиваются друг другу.
С увеличением давления электрическая прочность газа и электрическая прочность повышается. С увеличением содержания воды электрическая прочность сильно снижается.
Под действием электрических сил коллоидные смолистых веществ поляризуются, втягиваются в межэлектродное пространство, и образуют между электродами сплошные цепочки с пониженным сопротивлением.
При температурах близких к 00С, вода и смолистые вещества находятся в свободном состоянии, и масло обладает минимальной электрической прочностью. С повышением температуры часть коллоидных частиц воды или смолистых веществ растворяется, и образование токопроводящего канала затрудняется, электрическая прочность повышается. С понижением температуры до -400С вода замерзает и электрическая прочность увеличивается. При температуре больше 700С начинается процесс кипения и увеличивается количество газов, что снижает электрическую прочность.
В однородном электрическом поле электрическая прочность больше, чем в неоднородном поле. В неоднородном поле может происходит неполный пробой (корона), под действием которой протекают процессы разложения и образования продуктов которые резко снижают электрическую прочность.
После снятия напряжения пробитый промежуток восстанавливается.
Для повышения электрических характеристик жидкие диэлектрики тщательно очищают от различных загрязнений и влаги, а также дегазируют.
ЭЛЕКТРОПРОВОДНОСТЬ И ПРОБОЙ ТВЁРДЫХ ДИЭЛЕКТРИКОВ
Электропроводность твёрдых диэлектриков.
Объёмная проводимость.
Ток объёмной проводимости представляет собой направленное перемещение:
- сводных ионов, которые образуются в результате диссоциации (распада) молекул примесей, имеющихся в небольшом количестве: органические кислоты, щелочные оксиды (Na2O, K2O), влага и другие;
- ионов самого диэлектрика при повышенных температурах, поэтому удельное объёмное сопротивление ρ0 при некоторой температуре резко падает.
- электронов и ионов диэлектрика при приложении больших напряжений, при этом удельное объёмное сопротивление ρ0 падает.
Поверхностная проводимость.
Ток поверхностной проводимости зависит от степени увлажнения и загрязнения их поверхности. Чем сильнее увлажнена и загрязнена поверхность диэлектрика, тем меньшим удельным поверхностным сопротивлением ρп он обладает.
Для
защиты поверхности твёрдых диэлектриков
от загрязнений и влаги их покрывают
гидрофобными (не смачиваемыми водой)
покрытиями – лаками и эмалями.
Является важной характеристикой при оценке материалов в линейных изоляторах (изоляторы из стекла покрывают кремнейорганическими соединениями).