
- •17) Основные понятия и определения колебательных процессов. Механические колебания. Гармонические колебания. Незатухающие колебания.
- •18) Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебания.
- •19) Механические (упругие) волны. Основные характеристики волн. Уравнение плоской волны. Поток энергии и интенсивность волны. Вектор Умова.
- •20) Внутреннее трение(вязкость жидкости). Формула Ньютона. Ньютоновские и неньютоновские жидкости. Ламинарное и турбулентное течения жидкости. Формула Гагена-Пуазейля.
- •21) Звук. Виды звуков. Физические хар-ки звука. Хар-ки слухового ощущения и их связь с физ хар-ми звука. Шкала уровней интенсивности звука.
- •22) Закон Вебера-Фехнера. Шкала уровней громкости звука. Кривые равной громкости.
- •23) Ультразвук. Источники и приемники ультразвука, его основные свойства. Ультразвуковая эхолокация.
- •24) Действие ультразвука на вещество, клетки и ткани организма. Применение ультразвука в медицине.
- •25) Эффект Доплера и его использование в медико-биологических исследованиях.
- •34) Полное и полезное увеличение микроскопа. Ход лучей в микроскопе. Апертурная дифрагма и апертурный угол.
- •35) Поглощение света. Закон Бугера. Закон Бугера-Бера. Концентрационная колориметрия. Нефелометрия.
- •36) Рассеяние света. Явление Тиндаля. Молекулярное рассеяние, закон Рэлея. Комбинационное рассеяние.
- •37) Свет естественный и поляризованный.Поляризатор и анализатор. Закон Малюса
- •38) Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •39) Поляризацияя света при двойном лучепреломлении. Призма Николя. Вращение плоскости поляризации. Закон Био.
- •40) Тепловое излучение. Законы теплового излучения. Формула Планка.
- •41)Излучение солнца. Инфракрасное и ультрафиолетовое излучения и их применение в медицине.
- •42) Теплоотдача организма. Физические основы термографии.
- •43) Люминесценция, ее виды. Механизм и свойства люминесценции. Правило Стокса.
- •44) Применение люминофоров и люминесцентного анализа в медицине.
- •45) Вынужденное излучение. Инверсная заселенность уровней. Основные элементы лазера.
- •46) Устройство и принцип работы рубинового и гелий-неонового лазеров.
- •47) Свойства лазерного излучения. Применение лазерного излучения в медицине.
- •48) Рентгеновское излучение. Устройство рентгеновской трубки. Тормозное рентгеновское излучение. Характеристическое рентгеновское излучение. Закон Мозли.
- •49) Первичные процессы взаимодействия рентгеновского излучения с веществом: когерентное рассеяние, комптон-эффект, фотоэффект.
- •51) Явление радиоактивности. Виды радиоактивного распада. Основной закон радиоактивного распада.
- •52) Альфа-распад ядер и его способности. Бета-распад ядер, его виды, особенности и спектр. Гамма излучение ядер.
- •53) Взаимодействие ионизирующего излучения с веществом.
- •57) Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы.
- •58) Количественная оценка биологического действия ионизирующего излучения. Коэффициент качества излучения. Эквивалентная доза.
- •59) Первичное действие ионизирующих излучений на организм. Защита от ионизирующих излучений.
48) Рентгеновское излучение. Устройство рентгеновской трубки. Тормозное рентгеновское излучение. Характеристическое рентгеновское излучение. Закон Мозли.
Рентгеновское излучение - электромагнитные волны с длиной волны от 100 до 10-3 нм. На шкале электромагнитных волн рентгеновское излучение занимает область между УФ-излучением и γ-излучением. Рентгеновское излучение (Х-лучи) открыты в 1895 г. К. Рентгеном, который в 1901 г. стал первым Нобелевским лауреатом по физике.
Естественными источниками рентгеновского излучения являются некоторые радиоактивные изотопы (например, 55Fe). Искусственными источниками мощного рентгеновского излучения являютсярентгеновские трубки (рис. 32.1).
Рентгеновская трубка представляет собой вакуумированную стеклянную колбу с двумя электродами: анодом А и катодом К, между которыми создается высокое напряжение U (1-500 кВ). Катод представляет собой спираль, нагреваемую электрическим током. Электроны, испущенные нагретым катодом (термоэлектронная эмиссия), разгоняются электрическим полем до больших скоростей (для этого и нужно высокое напряжение) и попадают на анод трубки. При взаимодействии этих электронов с веществом анода возникают два вида рентгеновского излучения: тормозное и характеристическое.
Рабочая поверхность анода расположена под некоторым углом к направлению электронного пучка, для того чтобы создать требуемое направление рентгеновских лучей.
В рентгеновское излучение превращается примерно 1 % кинетической энергии электронов. Остальная часть энергии выделяется в виде тепла. Поэтому рабочая поверхность анода выполняется из тугоплавкого материала.
Тормозное рентгеновское излучение
Электрон, движущийся в некоторой среде, теряет свою скорость. При этом возникает отрицательное ускорение. Согласно теории Максвелла, любое ускоренное движение заряженной частицы сопровождается электромагнитным излучением. Излучение, возникающее при торможении электрона в веществе анода, называют тормозным рентгеновским излучением
При взаимодействии катодных электронов с атомами анода наряду с тормозным рентгеновским излучением возникает рентгеновское излучение, спектр которого состоит из отдельных линий. Это излучение
имеет следующее происхождение. Некоторые катодные электроны проникают в глубь атома и выбивают электроны с его внутренних оболочек. Образовавшиеся при этом вакантные места заполняются электронами с верхних оболочек, в результате чего высвечиваются кванты излучения. Это излучение содержит дискретный набор частот, определяемый материалом анода, и называется характеристическим излучением. Полный спектр рентгеновской трубки представляет собой наложение характеристического спектра на спектр тормозного излучения (рис. 32.4).
Существование характеристических спектров рентгеновского излучения было обнаружено с помощью рентгеновских трубок. Позже было установлено, что такие спектры возникают при любой ионизации внутренних орбит химических элементов. Исследовав характеристические спектры различных химических элементов, Г. Мозли (1913 г.) установил следующий закон, носящий его имя.
|
Корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:
где
ν - частота спектральной линии, Z - атомный
номер испускающего элемента, А, В -
константы.
Закон Мозли позволяет определить атомный номер химического элемента по наблюдаемому спектру характеристического излучения. Это сыграло большую роль при размещении элементов в периодической системе.