
- •А.С. Скачков
- •Предисловие
- •Часть III логика высказываний и предикатов Введение
- •Тема седьмая классическая логика высказываний
- •§7.1. Общая характеристика и особенности языка классической логики высказываний (клв)
- •§7.2. Пропозициональные связки; образование формул клв
- •§7.3. Истинностная функция пропозициональных связок, табличное определение истинности
- •§7.4. Виды и взаимоотношения формул и схем клв
- •§7.5. Схемы некоторых законов клв
- •7.6. Основные виды дедуктивных рассуждений, выраженные яклв
- •Тема восьмая классическое исчисление высказываний
- •§8.1. Логический смысл исчислений
- •§8.2. Классическое натуральное исчисление высказываний. Правила вывода
- •А, в ________ . А в
- •§8.3. Выводы и доказательства
- •§8.4. Эвристики натурального исчисления высказываний
- •Тема девятая язык и исчисление классической логики предикатов
- •§9.1. Общая характеристика классической логики предикатов
- •§9.2. Язык классической логики предикатов
- •§9.3. Запись имён и высказываний на яклп: термы и формулы
- •§9.4. Законы классической логики предикатов
- •§9.5. Исчисление предикатов первого порядка
- •Контрольные вопросы
- •Часть IV теория правдоподобных рассуждений Введение
- •Тема десятая основы формализации рассуждений с правдоподобным следованием
- •§10.1. Понятие о правдоподобном (вероятностном) рассуждении
- •§10.2. Фактический и логический смысл вероятности. Классическая (априорная) вероятность
- •§10.3. Статистическая (апостериорная) вероятность
- •§10.4. Исчисление условной вероятности
- •§10.5. Принцип обратной дедукции
- •Тема одиннадцатая разновидности индукции
- •§11.1. Понятие индукции в традиционной и современной логике
- •§11.2. Классификация видов индукции по характеру следования
- •§11.3. Индуктивные методы установления причинных связей
- •Тема двенадцатая умозаключения по аналогии, гипотеза и гипотетико-дедуктивный метод
- •§12.1. Аналогия: виды, приёмы повышения степени вероятности
- •§12.2. Гипотеза: виды, построение, этапы организации
- •§12.3. Требования к теоретическому обоснованию гипотез. Гипотетико-дедуктивный метод
- •Контрольные вопросы
- •Часть V основы аргументационного процесса Введение
- •Тема тринадцатая логические основы аргументации
- •§13.1. Основы теории аргументации
- •§13.2. Состав аргументации. Структура аргументационного процесса
- •§13.3. Доказательство и опровержение в аргументации
- •§13.4. Правила и логические ошибки в доказательстве и опровержении
- •Тема четырнадцатая внелогическая составляющая аргументационного процесса
- •§14.1. Спор и его виды
- •§14.2. Тактика спора
- •§14.3. Софистика. Уловки в полемике и эклектике
- •Контрольные вопросы
- •Перечень основных символов классической формальной логики
- •Библиографический список
- •Оглавление
§10.3. Статистическая (апостериорная) вероятность
Гораздо чаще, чем классическая (априорная) вероятность, встречается и соответствует широкому кругу опыта и в большей мере служит фактическим основанием для разработки логической вероятности вероятность статистическая (апостериорная). Ключевым для понимания этой разновидности вероятности является понятие относительной частоты. Последняя представляет собой отношение числа появлений изучаемого события в серии испытаний в данных условиях к числу всех испытаний, в которых это событие могло бы появиться при тех же условиях.
Пример
Допустим, мы хотели выяснить, какой процент женщин в большом городе имеет хотя бы одного ребёнка. Для этих целей мы взяли достаточно обширную, разнообразную выборку женщин данного города (например, 5000 человек) и выяснили, что 1500 из них имеет хотя бы одного ребёнка. Таким образом, мы получили, что относительная частота свойства «иметь хотя бы одного ребёнка» у рассмотренной группы женщин составляет 0,3. Полагая, что исследованная выборка должна показывать усреднённый результат, и перенося свойство «вероятность иметь ребёнка для некоторых женщин данного города составила 0,3» на женщин всего города (на всю популяцию), получим заключение: «Вероятность иметь ребёнка у любой из женщин данного города равна 0,3».
В случаях как классической, так и частотной вероятностей с каждым элементарным событием или высказыванием о нём (для выражения чего используем символ пропозициональной переменной — а либо символ правильно построенной формулы КЛВ — А) удаётся увязать вполне определённую по количеству вероятность (для выражения чего используем запись — P(а) или P(А)). P(А) — частным случаем которой является P(а) — принимает численные значения в интервале [0, 1] (от «нуля» до «ста» процентов): значение [0] свидетельствует о невероятности наступления элементарного события а либо сложного события А; значение [1] свидетельствует о достоверности наступления простого события а либо сложного события А. Под сложным событием будем понимать входящие в полную систему несовместимых результатов опыта её подсистемы (подклассы). Каждый из таких подклассов составлен из элементарных событий и на языке классической логики высказываний может быть представлен формулами: (р), (рq), (рq), (рq), (р≡q) и т. д.
Пример
Применительно к результатам бросания идеальной шестигранной игральной кости сложное событие, выражаемое формулой (р≡q), соответствует высказыванию «чётное число выпадает тогда и только тогда, когда выпадает число, делящееся на два», и вероятность этого сложного события составляет 1/2, поскольку чётных, делящихся на два чисел в полной системе результатов имеется три — {2, 4, 6}. Запись сложного события (рq) означает, например, «выпало чётное число и выпало число, делимое на шесть». Чётное число выпадает с вероятностью 1/2, но чётных чисел на шестигранной игральной кости три, при этом только одно из них делимо на шесть (т. е. вероятность числа 6 в совокупности чётных чисел шестигранной игральной кости равна 1/3), поэтому описываемая в данном сложном событии ситуация будет соответствовать действительности с вероятностью 1/6. Сложное событие, фиксируемое формулой (рр), имеет вероятность, равную 1, поскольку означает ситуацию «выпадает либо чётное, либо нечётное число», которая осуществляется абсолютно при любом бросании. Для сложного события формы (рр), являющейся в КЛВ фиксирующей нарушение закона противоречия тождественно-ложной формулой, будем иметь вероятность, равную 0, поскольку такое событие в принципе невозможно.
Поскольку сложные события могут быть записаны разнообразными, в том числе выполнимыми, формулами КЛВ, то те из последних, что являются тавтологиями (законами, тождественно-истинными формулами), имеют вероятность, равную 1, а проводимые в этих формах заключения являются достоверными. Соответственно, сложные события, фиксируемые в свою очередь невыполнимыми (тождественно-ложными) формулами, имеют вероятность, равную 0, т. е. являются невозможными. Те же из выполнимых формул, что не относятся к тождественно-истинным формулам, т. е. являются логически недетерминированными, служат для фиксации событий, имеющих вероятность больше 0, но меньше 1: 0<P(А)<1. Это объясняется тем, что множество истинностных значений всякой не являющейся тождественно-истинной выполнимой формулы в силу принципа двузначности представлено двумя подмножествами со значениями: 0 — ложь и 1 — истина. Каждое из подмножеств содержит строго определённое число (набор) элементов, а именно: строк, в которых данная формула принимает значений 0 либо 1. Элементы подмножества 1 принято называть положительными (благоприятными) исходами, а элементы подмножества 0 — отрицательными (неблагоприятными) исходами. Отношение количества положительных исходов (какое-то число а) к количеству отрицательных исходов (какое-то число b), т. е. a/b, и есть частотная вероятность формулы, фиксирующей сложное событие: P(А).
Пример
Возьмём в качестве фиксирующей сложное событие формулы запись на ЯКЛВ одного из не дающих достоверного вывода модусов условно-категорического умозаключения: ((аb)b)а). В содержательном варианте это может быть высказывание: «Если чёрная кошка перебегает мне дорогу, то я имею неприятности, но неприятности я имею, значит, чёрная кошка перебежала мне дорогу». Истинностная таблица данной формулы:
а |
b |
((а b) |
|
b) а | |
и |
и |
|
и |
и |
и |
и |
л |
|
л |
л |
и |
л |
и |
|
и |
и |
л |
л |
л |
|
и |
л |
и |
Рис. 29
Очевидно, что вероятность истинности этой формулы равна 3/4: P((аb)b)а)=3/4.