
- •Рекомендованная литература по курсу
- •Введение в предмет и метод статистики
- •Группировка статистических данных
- •Распределение промышленной продукции, произведенной в различных формах хозяйствования за отчетный период.
- •Комбинированные группировки
- •Техника проведения группировки.
- •Приемы вторичной группировки.
- •Статистические таблицы.
- •Продажа некоторых продуктов питания продовольственными магазинами города.
- •Процент женщин в общей численности рабочих и служащих.
- •Статистические графики.
- •Классификация статистических графиков.
- •Гистограммы.
- •Средние величины.
- •Средняя арифметическая
- •Средняя гармоническая.
- •Медиана
- •Показатели вариации.
- •Абсолютные и средние показатели вариации и способы их расчета.
- •Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
- •Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
- •Показатели относительного рассеивания.
- •Ряды Динамики. Установление вида ряда динамики.
- •Приведение рядов динамики в сопоставимый вид.
- •Определение среднего уровня ряда динамики.
- •Показатели изменения уровней ряда динамики.
- •1. Определяем цепные и базисные темпы роста (к).
- •Определение в рядах динамики общей тенденции развития.
- •Определение в рядах внутригодовой динамики.
- •Индексный метод. Статистические индексы.
- •Индивидуальные и общие индексы.
- •Агрегатные индексы.
- •Индексы с постоянными и переменными весами.
- •Средние индексы.
- •Расчеты недостающих индексов с помощью индексных систем.
- •Выборочное наблюдение.
- •Малая выборка.
- •Способы распространения характеристик выборки на генеральную совокупность.
- •Способы отбора единиц из генеральной совокупности.
- •Изучение статистической связи.
- •I. Общие положения
- •II. Государственная статистическая отчетность,
- •III. Об ответственности за нарушения порядка представления
Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
Техника вычисления дисперсии сложна, а при больших значениях вариант и частот может быть громоздкой. Расчеты можно упростить, используя свойства дисперсии.
Свойства дисперсии.
Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет.
Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет.
Уменьшение или увеличение каждого значения признака в какое-то число раз к соответственно уменьшает или увеличивает дисперсию в
раз, а среднее квадратическое отклонение - в к раз.
Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной:
. Если А равна нулю, то приходим к следующему равенству:
, т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.
Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.
Порядок расчета дисперсии простой:
1) определяют среднюю
арифметическую
;
2) возводят в квадрат
среднюю арифметическую;
3) возводят в квадрат
каждую варианту ряда
;
4) находим сумму
квадратов вариант
;
5) делят сумму
квадратов вариант на их число, т.е.
определяют средний квадрат
;
6) определяют разность
между средним квадратом признака и
квадратом средней
.
Пример 5.
Имеются следующие данные о производительности труда рабочих:
Таблица 6.4
Табельный номер рабочего |
Произведено продукции, шт. |
|
1 |
8 |
64 |
2 |
9 |
81 |
3 |
10 |
100 |
4 |
11 |
121 |
5 |
12 |
144 |
ИТОГО |
50 |
510 |
Произведем следующие расчеты:
шт.
Пример 6.
Определить дисперсию в дискретном ряду распределения, используя табл. 6.5.
Таблица 6.5.
Произведено продукции 1 рабочим, шт. (х) |
Число рабочих, n |
|
|
|
8 |
7 |
56 |
64 |
448 |
9 |
10 |
90 |
81 |
810 |
10 |
15 |
150 |
100 |
1500 |
11 |
12 |
132 |
121 |
1452 |
12 |
6 |
72 |
144 |
864 |
ИТОГО |
50 |
500 |
510 |
5074 |
Получим тот же результат, что в табл. 6.3.
Рассмотрим расчет дисперсии в интервальном ряду распределения.
Порядок расчета
дисперсии взвешенной (по формуле
):
определяют среднюю арифметическую
;
возводят в квадрат полученную среднюю
;
возводят в квадрат каждую варианту ряда
;
умножают квадраты вариант на частоты
;
суммируют полученные произведения
;
делят полученную сумму на сумму весов и получают средний квадрат признака
;
определяют разность между средним значением квадратов и квадратом средней арифметической, т.е. дисперсию
.
Пример 7.
Имеются следующие данные о распределении посевной площади колхоза по урожайности пшеницы:
Таблица 6.6
Урожайность пшеницы, ц/га |
Посевная площадь, га |
|
|
|
|
14 - 16 |
100 |
15 |
1500 |
225 |
22500 |
16 - 18 |
300 |
17 |
5100 |
289 |
36700 |
18 - 20 |
400 |
19 |
7600 |
361 |
144400 |
20 - 22 |
200 |
21 |
4200 |
441 |
88200 |
ИТОГО |
1000 |
|
18400 |
|
341200 |
В подобных примерах прежде всего определяется дискретное значение признака в каждом интервале, а затем применяется метод расчета, указанный выше:
Средняя величина отражает тенденцию развития, т.е. действие главных причин. Среднее квадратическое отклонение измеряет силу воздействия прочих факторов.