
ФИЗИКА Ч1 / Лекции_Постников / 2_5
.doc
ЭЛЕКТРИЧЕСКИЙ ТОК В ПРОВОДНИКАХ
Характеристики электрического тока. Классическая теория электропроводности металлов. Законы Ома и Джоуля-Ленца в дифференциальной форме. Законы постоянного тока в интегральной форме. Характеристики электрической цепи, э.д.с. Соединения сопротивлений и э.д.с. Правила Кирхгофа.
-
Электродинамика – раздел учения об электричестве, в котором рассматриваются явления и процессы, связанные с движением электрических зарядов или заряженных тел.
-
Электрический ток – всякое упорядоченной движение электрических зарядов.
-
Электрический ток в проводящих средах под действием электрического поля – ток проводимости.
-
Механическое движение в пространстве макроскопических объектов – конвекционный ток.
-
Направление электрического тока – направление движения положительных зарядов.
-
Условия существования электрического тока в проводниках:
-
-
- наличие свободных носителей тока;
-
- существование в проводящей среде электрического поля, энергия которого расходуется на перемещение зарядов и восполняется от источников электрической энергии.
-
Силой электрического тока называется скалярная величина, равная отношению зарядя dq, переносимого сквозь рассматриваемую поверхность за малый промежуток времени dt, к величине этого промежутка
Для постоянного тока
-
Направление электрического тока определяется вектором плотности тока j, который направлен вдоль вектора напряженности электрического поля и численно равен отношению силы тока dI сквозь малый элемент поверхности dS, нормальный к направлению движения заряженных частиц, к величине площади этого элемента
В общем виде вектор плотности тока определяется из соотношения
-
Сила тока через произвольную поверхность S определяется
Для постоянного тока
-
Плотность электрического тока пропорциональна напряженности Е электрического поля в проводнике и совпадает с ней по направлению (закон Ома в дифференциальной форме)
где γ – удельная проводимость среды (удельная электропроводность); ρ – удельное эектрическое сопротивление среды.
-
Закон Ома основан на двух предположениях:
а) концентрация электронов проводимости не зависит от напряженности электрического поля в проводнике;
б) средняя скорость упорядоченного движения электронов во много раз меньше средней скорости их теплового движения
где
– средняя длина свободного пробега
электронов; е
– заряд электрона.
-
Электропроводность металлов обеспечивается большим количеством свободных носителей заряда – электронов проводимости – коллективизированных электронов.
-
В классической теории Друде-Лоренца электроны проводимости рассматриваются как электронный газ, обладающий свойствами идеального газа.
-
Концентрация электронов проводимости пропорциональна концентрации атомов
-
(1028
÷ 1029
м3)
где NA – постоянная Авогадро, А – атомная масса металла, ρ – его плотность.
-
Средняя кинетическая энергия теплового (хаотического) движения электронов
vкв
~ 105
м/с
-
Электрическое поле вызывает упорядоченное движение (дрейф) электронов. Плотность тока определяется
где
– средняя скорость дрейфа электронов
(< 10-4
м/с)
-
Электрический ток в цепи устанавливается за время
где L – длина цепи, с – скорость света.
-
В соответствии с классической теорией получается
и
где m – масса электрона; u – средняя скорость теплового движения электронов.
-
На длине свободного пробега электрон под действием электрического поля приобретае скорость vmax. При соударении с ионом электрон теряет эту энергию, которая переходит во внутреннюю энергию проводника (проводник нагревается).
-
Величина, численно равная энергии, выделяющейся в единице объема проводника за единицу времени, называется объемной плотностью тепловой мощности электрического тока.
-
Объемная плотность тепловой мощности электрического тока равна скалярному произведению векторов плотности тока и напряженности электрического поля (закон Джоуля-Ленца)
-
-
объемная плотность тепловой мощности электрического тока не зависит от характера соударений электрона;
-
из законов сохранения энергии и импульса следует, что при столкновении иону передается только малая часть энергии электрона
- при
неупругом столкновении;
- при
упругом столкновении.
-
Для всех металлов отношение коэффициента теплопроводности λ к удельной электрической проводимости γ прямо пропорционально температуре Т (закон Видемана-Франца)
-
Недостатки классической теории электропроводности металлов:
-
Невозможно объяснить экспериментально наблюдаемую линейную зависимость удельного электросопротивления от температуры.
-
Неправильное значение молярной теплоемкости металлов, которавя должна складываться из теплоемкости кристаллической решетки (3R) и теплоемкости электронного газа (3R/2). Однако в соответствии с законом Дюлонга-Пти молярная теплоемкость металлов мало отличается от 3R.
-
Экспериментальные значения удельного электросопротивления и теоретические значения средней скорости движения электронов приводят к значению длины свободного пробега, на два порядка превышающего период кристаллической решетки металла.
-
-
Силы кулоновского взаимодействия вызывают такое перераспределение зарядов в проводнике, при котором потенциалы во всех точках проводника выравниваются и напряженность поля внутри проводника становится равной нулю.
-
Для поддержания в цепи постоянного тока нужно, чтобы на носители тока действовали не только кулоновские силы, но и неэлектростатические силы, поддерживающие заданное значение напряженности электрического поля в проводнике. Такие силы называются сторонними силами.
-
Сторонние силы действуют внутри источников электрической энергии на носители тока, которые движутся против сил электростатического поля.
-
-
Если проводник содержит источник электрической энергии, то в произвольной точке проводника существует электростатическое поле кулоновских сил с напряженностью Екул и поле сторонних сил с напряженностью Естор=Fстор/q, а напряженность результирующего поля
-
По закону Ома плотность тока
-
Домножим обе части на ρ и на длину dl малого участка цепи. Для участка цепи между точками 1 и 2 (с учетом I=jS)
-
Интеграл
численно равен работе, которую совершают кулоновские силы по перемещению единичного положительного заряда из точки 1 в точку 2
-
Второй интеграл численно равен работе сторонних сил по перемещению единичного положительного заряда из точки 1 в точку 2. Этот интеграл определяет понятие электродвижущей силы
-
Напряжением U12 на участке цепи 1 – 2 называется физическая величина, численно равная работе, совершаемой кулоновскими и сторонними силами при перемещении единичного положительного заряда из точки 1 в точку 2
-
Сопротивлением R12 участка цепи между точками 1 и 2 называется интеграл
Для однородного проводника постоянного сечения
-
Обобщенный закон Ома (закон Ома в интегральной форме) для произвольного участка цепи
-
В неразветвленной замкнутой электрической цепи сила тока во всех сечениях одинакова, а сама цепь является участком с совпадающими концами.
где ξ – алгебраическая сумма всех ЭДС, приложенных в цепи.
-
Если замкнутая цепь состоит из источника электрической энергии с ЭДС ξ и внутренним сопротивлением r, а сопротивление внешней части цепи равно R, то закон Ома имеет вид
а разность потенциалов на клеммах источника равна напряжению на внешней части цепи
-
Если цепь разомкнута, то в ней тока нет и
-
При прохождении тока по проводнику в соответствии с законом Джоуля-Ленца выделяется теплота
-
Расчет разветвленных цепей состоит в отыскании токов в различных участках таких цепей по заданным значениям сопротивления участков цепи и приложенным в них ЭДС.
-
Узлом называется точка разветвленной цепи, в которой сходится более двух проводников.
-
Первое правило Кирхгофа (правило узлов): алгебраическая сумма токов, сходящихся в узле, равна нулю.
-
-
Второе правило Кирхгофа (правило контуров): в любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма произведений токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме ЭДС в контуре
-
Второе правило Кирхгофа позволяет рассчитывать величины токов и сопротивлений в сложных участках электрических цепей
-
При последовательном соединении проводников с сопротивлениями R1, R2 и R3 можно записать
-
но для
неразветвленной цепи
и
Это означает, что при последовательном соединении проводников сопротивление цепи равно сумме сопротивлений проводников, составляющих цепь.
-
При параллельном соединении проводников с сопротивлениями R1, R2 и R3 можно записать
но, применяя первое правило Кирхгофа для любого узла, получим
и тогда
Это означает, что при параллельном соединении проводников сопротивление цепи равно сумме обратных величин сопротивлений проводников, составляющих цепь.