
- •38. Методы синтеза цифровых су им. Метод дискретизации аналоговых регуляторов класса «вход/выход» (метод аналогий). Цифровой пид- регулятор.
- •39. Типовая методика структурно-параметрического синтеза контуров регулирования су им по желаемой передаточной функции. Привести пример.
- •40. Место силовых преобразователей в эп, используемом в системах промышленного электроснабжения. Однофазные и трёхфазные схемы вентильных преобразователей.
- •41. Работа 3-х фазного нулевого тп постоянного тока на активно-индуктивную нагрузку в режиме непрерывного тока при мгновенной коммутации. Диаграммы напряжения и тока при различных значениях угла
- •42. Процесс коммутации токов в фазах питающего трансформатора тп при переключении вентилей. Угол коммутации.
- •44. Принципы импульсного регулирования напряжения. Характер нагрузки импульсных преобразователей для электропривода постоянного тока. Параметры tр, t0,Ти, .
- •45. Тиристорные преобразователи частоты. Классификация. Двухзвенные пч с регулируемым напряжением (или током) в промежуточной цепи постоянного тока. Функциональная схема пч.
- •46. Защита тиристорных преобразователей от аварийных режимов работы. Защита от перезагрузок и токов кз. Защита тиристорных преобразователей от перенапряжений. Виды перенапряжений.
- •47. Понятие модели, цели моделирования, виды моделирования, классификация моделей, применение моделирования.
- •48. Разработка математических моделей (понятие математического моделирования, этапы и принципы построения, формы представления математических моделей).
- •49. Методы исследования моделей (методы исследования математических моделей систем и процессов, имитационное моделирование).
- •50. Принципы управления объектами.
- •51. Методика анализа устойчивости систем электроснабжения.
- •6.2.1. Критерий Гурвица Формулировка критерия: автоматическая система, описываемая характеристическим уравнением n-го порядка
- •6.2.2. Критерий Рауса
- •6.3. Частотные критерии устойчивости
- •6.3.1. Критерий Михайлова
- •6.3.2. Критерий Найквиста
- •53. Архитектуры систем распределенной обработки данных
- •1. Топология промышленных сетей
- •2. Физический интерфейс rs-485
- •3. Интерфейс «Токовая петля»
- •4. Hart-протокол
- •54. Место микропроцессоров в автоматизации систем энергоснабжения
- •1. Цифровые реле и защита в системах электроснабжения
- •2. Самодиагностика устройств црз
- •3. Принцип работы сторожевого таймера
- •4. Микропроцессорные устройства «Сириус», состав и функциональные возможности
- •55. Методы создания систем сбора данных на микроконтроллерах.
- •1. Объекты адресации языков программирования плк
- •2. Язык релейных схем (ld)
- •3. Язык функциональных блок-схем (fbd)
- •56. Классификация систем диспетчерского управления в энергетике
- •1. Состав модулей cpu и функциональные возможности
- •2. Модули расширения вводов-выводов
- •3. Коммуникационные модули
- •4. Человеко-машинный интерфейс
- •5. Основы функционирования плк
- •57. Scada-системы
- •1. Назначение и выполняемые функции
- •2. Краткие характеристики scada-система InTouch
- •3. Краткие характеристики scada-система Trace Mode
- •4. Краткие характеристики scada-система simatic WinCc
- •59. Методы расчёта режимов разомкнутых и простейших замкнутых эл-ких сетей.
- •Расчёты режимов разомкнутых сетей
- •Расчёты режимов простейших замкнутых электрических сетей
- •60. Выбор схем электрических сетей. Требования к надёжности электроснабжения.
- •62. Статическая устойчивость электроэнергетических систем. Основные понятия и определения. Задачи и методы расчета статической устойчивости.
- •64. Пуск и самозапуск двигательной нагрузки в промышленных системах эс.
- •65. Мероприятия по улучшению устойчивости электроэнергетических систем.
- •66. Электрические нагрузки. Показатели графиков электрических нагрузок. Методы расчёта.
- •Классификация графиков электрических нагрузок
- •Коэффициент использования ().
- •Выбор мощности и места установки компенсирующих устройств Определение места установки компенсирующих устройств в сетях до 1 кВ
- •Компенсация реактивной мощности в сети 6-10 кВ
- •В сетях с резкопеременной несимметричной нагрузкой
- •69. Защиты элементов системы электроснабжения в сетях до 1000 в(выбор предохранителей и автоматических выключателей).
- •71. Электробаланс и оценка режима электропотребления промышленного предприятия.
- •74. Максимальные токовые защиты.
- •Мтз с зависимой характеристикой времени срабатывания
- •75. Дифференциальные защиты
- •76. Дистанционные защиты (дз).
- •77. Защиты синхронных двигателей.
- •78. Защиты силовых трансформаторов
- •80. Схемы электрических соединений тэц. Особенности выбора схем. Схемы тэц на генераторном и повышенных напряжениях. Собственные нужды тэц.
- •81. Схемы электрических соединений пс. Особенности выбора схем. Схемы пс на высшем и низшем напряжениях. Собственные нужды пс.
- •83. Выбор эл-ких аппаратов и проводников. Нагрузочная спос-сть; проверка на электродин-кую и термическую стойкость; проверка на коммутационную способность.
39. Типовая методика структурно-параметрического синтеза контуров регулирования су им по желаемой передаточной функции. Привести пример.
Рассматриваемая методика широко применяется при синтезе систем подчиненного регулирования координат электроприводов и базируется на компенсации больших постоянных времени (БПВ) объекта упр-я устр-ом упр-я. Послед-ть этапов синтеза:
Структурно-параметрическая декомпозиция объекта управления.
Линейный объект управления разбивают на n последовательно соединенных динамических звеньев с одним или двумя доминирующими полюсами (апериодические первого-второго порядка и интегрирующие); в объект регулирования каждого контура последовательно включают фильтр (апериодическое звено первого порядка) с эквивалентной малой постоянной времени (ЭМПВ) T,i, i = 1,…, n; величину эквивалентной малой постоянной времени T,i каждого контура регулирования выбирают как минимум в 2 раза больше эквивалентной малой постоянной времени предыдущего контура регулирования, т. е. T , i 2T , i-1, i = 2,…, n .
В результате структурно-параметрической декомпозиции в объекте каждого контура регулирования должны быть выделены 1-2 БПВ и одна ЭМПВ T , i .
Выбор критерия качества регулирования контура.
За критерий качества регулирования каждого контура принимаем желаемую передаточную функцию разомкнутого контура. Для электромеханических СУ ЭП целесообразно применять настройки контуров регулирования на ТО или СО. Желаемую передаточную функцию разомкнутого контура в этом случае записывают в виде:
а) при настройке на ТО:
, (1)
б) при настройке на СО:
3. Определение структуры и параметров регулятора каждого контура регулирования (структурно-параметрический синтез регуляторов).
Передаточная функция оптимального регулятора i–го контура определяется в виде:
(2) где
Wоу,
i
(p)
– передаточная функция объекта
регулирования, входящая в
i
– й контур регулирования;
Wос, i (p) – передаточная функция звена отрицательной обратной связи i-го контура регулирования.
Далее производится расчет численных значений параметров синтезированных регуляторов (коэффициентов передач, постоянных времени интегрирования, дифференцирования).
4. Выбор элементной базы и расчет параметров принципиальной схемы регулятора каждого контура.
Современные электронные устройства управления непрерывных систем управления реализуют, на основе операционных усилителей в интегральном исполнении. Расчет параметров принципиальной схемы регулятора сводится к расчету численных значений резисторов и конденсаторов во входной цепи и цепи обратной связи операционного усилителя.
Рассмотрим применение рассмотренной методики для синтеза контура регулирования тока якоря электродвигателя постоянного тока. Структурная схема системы регулирования приведена на рис1.
1. ОУ представляет собой 2 аперио-х звена первого порядка, описывающих тиристорный преобразователь (Kтп и Tтп – его параметры) и якорную цепь двигателя. При синтезе контура рег-я тока якоря обр-ой связью по э.д.с. двигателя Eд можно, пренебречь, поскольку скорость ее изменения значительно ниже скорости изменения тока якоря.
Рис1. Структурная схема контура регулирования тока якоря электродвигателя
К большим постоянным времени объекта управления относится постоянная времени Tэ электромагнитной цепи, к малым – постоянная времени Tтп тиристорного преобразователя. Тогда эквивалентная малая постоянная времени контура регулирования тока Tт = Tтп.
2. Зададимся настройкой контура регулирования тока на ТО, т. е. критерием качества в виде (1).
3. Тогда структура регулятора тока якоря в соответствие с (2) после элементарных преобразований будет иметь вид
, т.
е. является пропорционально-интегральной
(ПИ).
Параметры этого регулятора:
,
,
,
причем только 2 из них являются
независимыми, поскольку
.
4. Для расчета параметров регулятора рассмотрим его принципиальную схему на основе операционного усилителя (рис2.).
Рис2. Принципиальная схема ПИ-регулятора тока якоря
Заметим, что принципиальная схема регулятора содержит 4 элемента Rзт , Rот , Rост и Сот, значения которых неизвестны, однако в распоряжении проектировщика имеется лишь 2 параметра регулятора (см. п. 3). Зададимся значением емкости Сот, например Сот = 1 мкф. Тогда Rост = Tэ / Сот , Rзт = Rост / Kрт .
Поскольку сумма
входных токов операционного усилителя
в потенциально нулевой точке M
(см. рис.2) равна нулю, то
.
Отсюда
,
гдеUзт
, Uост
– напряжения
задания и обратной связи по току,
соответствующие максимально допустимому
току якоря.