
- •. Параллельная работа трансформаторов при неравенстве напряжений короткого замыкания
- •1.8.3. Параллельная работа трансформаторов с различными группами соединения
- •4. Моменты асинхронного двигателя.
- •5. Поясните устройство и принцип действия генератора и дв-ля постоянного тока. Назначение и устройство коллектора в машинах постоянного тока (покажите принцип выпрямления эдс).
- •8. Способы регулирования скорости асинхронного двигателя.
- •9.Выбор мощности электродвигателей для работы в режимах s1, s2 и s3.
- •10. Частотное управление асинхронными двигателями.
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •12. Система генератор – двигатель (гд).
- •13. Система тиристорный преобразователь – двигатель (тп – д).
- •14. Регулируемый электропривод переменного тока с вентильным д-ем (вд).
- •15. Энергетические ресурсы.
- •Доказанные запасы первичных энергоресурсов (пэр) в мире
- •16. Теплоэлектропроизводящие установки.
- •17. Паровые котельные установки.
- •18. Водогрейные котельные установки.
- •19. Тепловые сети и теплообменники.
- •20. Теплопотребление.
- •21. Холодильные машины, тепловые насосы.
- •22. Нагнетательные машины.
- •1. Центробежные вентиляторы.
- •3. Центробежные компрессоры.
- •23. Водоснабжение и очистка.
- •4) Термические и биологические способы обработки сточных вод.
- •25 Основные принципы энергосбережения в с-мах эс(повышение эф-ти тп, лэп, электро-двигателей, с-м освещения, технолог.Установок). С-мы учета энергоресурсов.Рп и тр-ры
- •26. Назначение, классификация исполнительных механизмов и систем управления, обобщенная функциональная схема суим.
- •1. По виду рабочего органа исполнительного механизма:
- •2. По степени автоматизации функций управления:
- •3. По режимам работы:
- •5. По виду силового преобразователя энергии:
- •6. По месту суим в структуре асутп:
- •27. Общий подход к проектированию суим. Основные этапы исследования и проектирования суим.
- •28. Регуляторы суим.
- •1. Аналоговые регуляторы класса “вход-выход” на основе операционных усилителей
- •4. Дискретные передаточные функции и разностные уравнения
- •36 Математическое моделирование энергосистем и задач оптимизации.
- •37. Определение критериев подобия
- •42Микропроцессорные устройства защиты и автоматики.
- •3.4.7 Сетевая архитектура бмрз
- •43Микроконтроллеры.
- •44Программируемые контроллеры
- •48. Системы возбуждения и автоматического регулирования.
- •49 . Гашение магнитного поля
- •Параметры электрической системы обратной и нулевой последовательностей
- •51. Средства и методы ограничения токов короткого замыкания в системах промышленного электроснабжения.
- •1. Оптимизация структуры и параметров сети (схемные решения).
- •2. Стационарное или автоматическое деление сети.
- •3. Токоограничивающие устройства
- •4. Оптимизация режима заземления нейтралей в электрических сетях.
- •55. Электрические нагрузки. Показатели графиков электрических нагрузок. Методы расчёта.
- •Классификация графиков электрических нагрузок
- •Показатели графиков электрических нагрузок
- •Коэффициент спроса ().Относится к групповым графикам.
- •Коэффициент заполнения графика нагрузки ().
- •Коэффициент равномерности графика нагрузки ().
- •Определение расчётной нагрузки по установленной мощности и коэффициенту спроса. Расчётная нагрузка для группы однородных по режиму работы приёмников определяется из выражений:
- •57. Выбор силовых трансформаторов и месторасположения питающих и цеховых трансформаторных подстанций
- •Выбор мощности силовых трансформаторов
- •Картограмма нагрузок
- •Определение центра электрических нагрузок(цэн)
- •58. Компенсация реактивной мощности (виды и методы компенсации, выбор мощности и места установки компенсирующих устройств).
- •59 Защита элементов системы электроснабжения в сетях до 1000 в предохранителями и автоматическими выключателями.
- •62. Качество электрической энергии.
- •63 Измерительные трансформаторы тока и напряжения в системах релейной защиты и противоаварийной автоматики.
- •66. Дистанционные защиты.
- •75. Проектирование механической части воздушных лэп.
- •76.Выбор эл.Аппаратов.
- •77. Регулирование напряжения в эл.Сетях.
- •78. Единая энергетическая система (еэс) рф
- •2. Электрические станции
- •3. Электрические и тепловые сети
- •4. Потребители электроэнергии
- •79 Тепловые и атомные электростанции.
- •1.Классификация типов эл.Станций по ряду осн.Признаков.
- •2.Тепловые схемы (понятия принципиальных и полных схем).
- •3.Технологическая схема тэс
- •Компоновочные схемы тэс
- •4. Основное и вспомогательное оборудование тэс
- •Турбины и генераторы
- •Атомные электростанции
- •80 Гидроэлектростанции
- •81 Нетрадиционные источники энергии и их использование.
21. Холодильные машины, тепловые насосы.
В настоящее время применяется около 30 холодильных агентов, наиболее распространенными из которых являются: аммиак, углекислый газ, сернистый ангидрид, фреоны и хладоны. Термодинамические характеристики наиболее часто используемых холодильных агентов приведены в табл. 1
Самый распространенный из фреонов — фреон-12 — тяжелый газ, не имеющий запаха, безвредный при отсутствии открытого пламени. Хладон 123 (СНСI2=CF2) – прозрачная легкокипящая жидкость срезким запахом. Хладон 124,124а (CHFCI – CF3, CHF2 – CF2CI) – газы без цвета и запаха с температурой кипения минус 10,8°С и минус 12°С с плотностью 1,4 г/см3. Фреоны применяются преимущественно в установках с низкими температурами испарения (от -70 до -90 °С).
В холодильных установках роль холодного
источника выполняют воздух и содержимое
холодильной камеры, в теплонасосных —
речная вода, земля или атмосферный
воздух.
Таблица 8.1
Парокомпрессионные холодильные установки.
Рабочим телом, которое в холодильниках называется холодильным агентом, или хладоносителем, а в теплонасосных — теплоносителем, служат вещества, имеющие низкую температуру кипения. В 30-х гг. XX в. были впервые использованы фреоны — углеводороды, в которых водород полностью или частично замещен галоидами, чаще фтором и хлором, например фреон-12 (СР2С12), фреон-22 (СНР2С1). До 20-х гг. применялись только поршневые компрессоры, затем в крупные установках их стали заменять винтовыми и лопаточными.
Работает
установка так. Насыщенный пар хладоагента
сжимается компрессором 3
(рис.
8.1, а)
и
подается в конденсатор 2
где,
теряя теплоту,
в
окружающую среду, частично конденсируется.
Эта парожидкостная смесь направляется
в дроссельный вентиль 1,
где
ее давление и температура падают (роль
вентиля в принципе может выполнить
любая расширительная машина). После
дросселя влажный пар небольшой сухости
с низкой температурой поступает в
испаритель 5, располагающийся в охлажденном
помещении (шкафу) 4,
за
счет теплоты которого
хладоагент
испаряется.
Холодильный коэффициент вычисляется по формуле:
где l
— работа, затрачиваемая на привод
компрессора.Рис.8.1.
Парокомпрессиональная холодильная
установка:
а-схема установки;1- дроссельный
вентиль;2- конденсатор;3-
компрессор;4– охлажденное помещение
(шкаф);5- испаритель;б–изменение
коэффициента в зависимости от температур1
и t2
Отсюда
видно, что
будет тем больше, чем выше температура
холодильнике и чем ниже температура
среды, охлаждающей хладоагент в
конденсаторе (рис. 8.1,б).
При
равенстве этих температур
=
Тепловые насосы. Тепловыми насосами называются установки, в которых за счет затраты работы производится отъем энергии от тел с более низкой температурой Т1 и передача ее другим телам с более высокой температурой Т2. Применение тепловых насосов дает возможность использования энергии тел, имеющих сравнительно низкую температуру, например, окружающего воздуха, холодной воды и др.
Компрессорные тепловые насосы. На рис. 8.2 изображены принципиальная схема и идеальный цикл компрессионных тепловых насосов. Рабочее тело (любое из употребляемых в холодильных установках) засасывается в компрессор 1, где сжимается за счет затраты энергии двигателем до состояния сухого насыщенного или перегретого пара. Этому процессу соответствует изоэнтропа /—2 идеального цикла. Сжатый пар нагнетается компрессором в конденсатор 2. Здесь при постоянных значениях давления и температуры пар конденсируется, отдавая определенное количество теплоты охлаждающей среде — воде или воздуху. За счет этой теплоты охлаждающая среда подогревается до такой температуры, при которой она может быть использована для различных бытовых нужд, в частности для отопления. Наиболее эффективная температура подогрева равна 60...70 °С. Процессу в конденсаторе соответствует линия 2—3. После
Рис.8.2.
Парокомпрессионный тепловой насос:
Принципиальная схема (а): 1 – компрессор; 2 – конденсатор; 3 – дроссельный клапан; 4 – испаритель;
Идеальный цикл теплового насоса (б): 1…4 – точки диаграммы.
конденсатора рабочее вещество в идеальном цикле поступает в расширительный цилиндр, где понижаются его давление и температура — изоэнтропный процесс 3—4. Отсюда рабочее тело поступает в испаритель 4, в котором оно испаряется при неизменных значениях давления и темпе- ратуры, отнимая определенное количество теплоты от тел, имеющих низкий температурный уровень, например от окружающего воздуха, холодной воды и т. д. Из испарителя влажный пар засасывается в компрессор, и работа установки повторяется. Идеальный цикл, представляет собой обратный цикл Карно.
Эффективность
тепловых насосов оценивается отопительным
коэффициентом, или коэффициентом
преобразования,
под которым понимается отношение
количества теплоты q1
отданного
1 кг рабочего вещества в конденсаторе,
к теплоте q1
-
q2,
эквивалентной
работе, затраченной на осуществление
цикла:
Кондиционер RVZT5 Термометры сопротивления измеряют температуру наружного воздуха, на выходе 1-го подогревателя, на входе выходного вентилятора.
Совмещенные приборы влажности и температурыНТ выдают сигналы 0-10 в о температуре и влажности на выходе вентилятора кондиционера и вентиляционном канале.
Датчики дифференциального давленияс дискретным выходом контролируют работоспособность (засоренность) фильтров, вращение входного и выходного вентиляторов (двигатели и вентиляторы соединены ременной передачей, исправность которой нужно контролировать).
Имеется дискретные защиты от замерзания (термостаты) по воздуху и по обратной сетевой воде, датчик превышения допустимой влажности (максимум влажности).
Включение двигателя производится промежуточными реле входного и выходного вентиляторов КА7(РДВ=15 кВт), циркуляционных насосов 1-го и 2-го подогревателей - КА8, КА9 (Рдв=0,4кВт), увлажнитель - К1О (РДВ=3 кВт).Основные управляющие элементы:
• закрылки наружного воздуха;
• закрылки воздуха помещения;
• трехходовой клапан сетевой воды 1-го подогревателя;
• трехходовой клапан сетевой воды 2-го подогревателя;
• двухходовой клапан холодоносителя;
• управление увлажнителем.