
- •Министерство образования Российской федерации
- •Теория автоматического управления
- •Удк 62-52
- •Содержание
- •Используемая аббревиатура
- •Введение
- •Основные понятия. Задачи теории управления. Принципы автоматического управления.
- •2. Классификация технических систем управления
- •3. Основные элементы, функциональные блоки и структуры сау. Электромеханическая сау.
- •4. Анализ непрерывных линейных сау. Способы описания и характеристики линейных сау.
- •4.1. Методы описания и исследования динамических управляемых объектов в частотной и временной области
- •4.2. Статические и динамические характеристики сау
- •4.3. Переходные и импульсные характеристики сау `
- •4.4. Уравнение Лагранжа 2-го рода и дифференциальные уравнения
- •4.5. Линеаризация сау
- •5. Структурные методы исследования линейных сау
- •5.1. Преобразование Лапласа, передаточные функции и матрицы
- •5.2. Типовые динамические звенья и структурные схемы сау
- •5.3. Способы соединения звеньев. Правила преобразования структурных схем
- •6. Устойчивость линейных систем управления
- •6.1. Характеристическое уравнение линейной сау. Влияние корней характеристического полинома на устойчивость сау
- •6.2. Алгебраические критерии устойчивости
- •6.2.1. Критерий Гурвица Формулировка критерия: автоматическая система, описываемая характеристическим уравнением n-го порядка
- •6.2.2. Критерий Рауса
- •6.3. Частотные критерии устойчивости
- •6.3.1. Критерий Михайлова
- •6.3.2. Критерий Найквиста
- •7. Качество систем управления
- •7.1. Прямые показатели качества регулирования
- •7.2. Косвенные показатели качества регулирования
- •7.2.1. Оценка качества регулирования по расположению корней характеристического уравнения
- •8. Метод пространства состояний
- •8.1. Векторно-матричное описание сау
- •8.2. Схемы пространства состояний
- •8.3. Понятие матрицы перехода (переходных состояний)
- •8.4. Управляемость и наблюдаемость сау
- •9. Синтез линейных непрерывных сау
- •9.1. Общая постановка задачи синтеза
- •9.2. Типовые параметрически оптимизируемые регуляторы (корректирующие звенья) класса “вход-выход”
- •9.3. Синтез систем с подчиненным регулированием координат
- •Методика структурно-параметрического синтеза контуров регулирования сау по желаемой передаточной функции
- •10. Дискретные и дискретно-непрерывные сау
- •10.1. Дискретизация и модуляция сигналов. Аналих линейных импульсных сау
- •10.2. Математическое описание дискретных систем
- •10.2.1. Z-преобразование и дискретные передаточные функции
- •10.2.2. Разностные уравнения
- •10.2.3. Описание дискретных сау в переменных состояния
- •10.2.4. Описание дискретно-непрерывных сау в пространстве состояний
- •10.3. Синтез цифровых систем управления
- •10.3.1. Метод дискретизации аналоговых регуляторов
- •10.3.2. Метод переменного коэффициента усиления
- •Литература
10.2. Математическое описание дискретных систем
Математическое описание, анализ и синтез дискретных систем осуществляют с применением метода Z-преобразования (дискретных передаточных функций), разностных уравнений или метода переменных состояния.
10.2.1. Z-преобразование и дискретные передаточные функции
Преобразование Лапласа квантованного по времени сигнала f(kT) имеет вид
(10.7)
Сделаем замену
,
что позволит получитьZ-преобразованиевида
(10.8)
где z- комплексная переменная, действительная и мнимая части которой определяются как
,
,
где
Анализ проекций комплексной переменной zна оси Re(z) иIm(z) позволяет сделать вывод, что область устойчивости дискретной САУ на комплексной плоскости ограничена окружностью единичного радиуса. Именно в этом случае действительные части корней характеристического полиномаW(p) отрицательны.
Физический смысл сомножителя
при функцииf (kT)
- взятие ее текущего (k= 0) и предшествующих дискретных значений
(k= 1, 2, …).
В инженерной практике для описания динамических звеньев дискретных САУ (объектов управления, регуляторов, фильтров и т. п.) применяют дискретные передаточные функции(ДПФ) вида
(10.9)
где X(z),Y(z) – соответственно входная и выходная переменные дискретного звена. Следует отметить, что практически реализуемые ДПФ должны иметь порядок полинома знаменателя не менее порядка полинома числителя.
Способы получения ДПФ:
1)
Прямой способ (прямое дискретное
преобразование Лапласа) сводится к
следующему:
x(t)
x(kT)
X(z)
y(t)
y(kT)
Y(z)
Чтобы
получить прямое дискретное преобразование
Лапласа сигналаx(t),
необходимо заменить этот сигнал
дискретными значениямиx(kT).
Каждое значениеx(kT)
домножить наz-k,
а затем полученный степенной ряд свернуть
в конечную сумму (10.7), которая, по сути,
представляет собой дискретное
преобразование ЛапласаX(z).
Аналогично получают прямое дискретное
преобразование Лапласа сигналаy(t).
Прямоеz-преобразование
является однозначным преобразованием.
Обратное преобразование Лапласа,
т. е. переход от x(kT) кx(t), является неоднозначным, т. к., в общем случае, неизвестно поведение функции в промежутках между срабатыванием импульсного квантователя (замыканиями ключа).
Следует отметить, что, хотя прямое преобразование Лапласа является однозначным, одно и то же динамическое звено может иметь бессчетное число дискретных передаточных функций в зависимости от применяемого метода экстраполяции. В частности, интегрирующее звено может быть представлено следующими дискретными передаточными функциями:
,(10.10)
,(10.11)
, (10.12)
, (10.13)
где T– такт квантования, 01 .
Первая и вторая передаточные функции получены с применением экстраполяции нулевого порядка (метода прямоугольников), причем оценка производной выходного сигнала осуществляется соответственно вk-й и
(k-1)-й моменты времени, реализуянеявный и явный методы Эйлера.
Третья передаточная функция получена с применением метода Тастина(метода трапеций), причем усредненная оценка производной выходного сигнала осуществляется по двум точкам – вk-й и (k-1)-й моменты времени, т. е. смещена на 0,5Tвлево от момента времениkT.
Четвертая передаточная функция (семейство передаточных функций) получена на основе метода прямоугольников с произвольной смещенной оценкой производной выходного сигнала (=var) .
Дискретные передаточные функции дифференцирующего звена могут быть получены из приведенных выше путем перестановки полиномов числителя и знаменателя.
2) С помощью таблицы z-преобразований [2, 6, 10].
В табл. 10.1 приведено Z-преобразование наиболее часто встречающихся в САУ функций на основе экстраполяции вида (10.11).
Таблица 10.1
x(t) |
X(p) |
X(z) |
1 |
2 |
3 |
|
1 |
1 |
|
|
|
1(t) |
|
|
t |
|
|
|
|
|
|
|
|
Продолжение табл. 10.1
1 |
2 |
3 |
sin |
|
|
cos |
|
|
|
|
|
|
|
|
3) Через импульсную переходную характеристику
. (10.14)
Замечание:все приведенные выше преобразования относятся к дискретным системам без фиксатора (экстраполятора нулевого порядка). При необходимости формирования непрерывной кусочно-ступенчатой функции времени последовательно с этими ДПФ необходимо включить звено с передаточной функцией (10.6).
ДПФ систем с фиксаторомимеет вид:
(10.15)
где Wн(p) – передаточная функция непрерывной системы,
Z – операторZ-преобразования.
К ДПФ и соответствующим структурным схемам применимы те же правила структурных преобразований, что и для непрерывных систем.
В системе Matlabимеются специальные функции, позволяющие преобразовать непрерывную передаточную функцию в ДПФ и обратно:c2dиd2c. Рассмотрим пример преобразования непрерывной передаточной функции, описывающей двигатель постоянного тока, в ДПФ. Пусть электродвигатель описывается звеном 2-го порядка и имеет параметры, соответствующие (8.16). Тогда непрерывная ПФ будет иметь вид:
.
Запишем скрипт MATLAB, полагая, что такт квантованияT=0,01 с:
num=[2];
den=[0.02 1 4];
sysc=tf(num,den); % Формирование непрерывной ПФ
sysd=c2d(sysc,0.01) % Формирование ДПФ
T=[0:0.01:1]; % Задание параметров вычислений
step(sysd,T) % Расчет переходного процесса
Transfer function:
0.004254 z+ 0.003602
---------------------- .
z^2 - 1.591z+ 0.6065
На рис. 10.4 приведена схема набора модели в среде Simulink, а на рис. 10.5 изображен переходный процесс в дискретной САУ при подаче на якорную цепь электродвигателя ступеньки напряжения 1В.
Рис. 10.4. Схема набора дискретной модели электродвигателя
Рис. 10.5. Переходный процесс в электродвигателе
Как следует из графика, при заданном такте квантования T=0,01с переходный процесс практически идентичен переходному процессу в непрерывной САУ (см. рис. 8.4).