
Cundari Th.R. -- Computational Organometallic Chemistry-0824704789
.pdf
418 |
Kwon and McKee |
TABLE 6 Optimized Distances of Cp–E for LiCp, LiCp*,
MgCp, [MgCp*] , AlCp, and AlCp* at Various
˚
Theoretical Levels (distance in A, angle in degrees)
|
PM3 |
HF/6-31G* |
B3LYP/6-31G* |
LiCp |
1.956 |
1.765 |
1.730 |
LiCp* |
2.007 |
1.748 |
1.717 |
MgCp |
2.039 |
1.908 |
1.881 |
MgCp* |
2.058 |
1.888 |
1.864 |
AlCp |
2.173 |
2.050 |
2.065 |
AlCp* |
2.197 |
2.008 |
2.022 |
|
|
|
|
The effects caused by methyl substitution (Cp → Cp*) on the main structural features of metallocenes are shown in Table 6. Comparison of calculated Cp–E distance between Cp-containing half-sandwich metallocenes and Cp*-con- taining half-sandwich metallocenes suggests that methyl substitutions on the Cp rings has little affect on Cp–E distances. This fact is also supported by previous calculations of Cp2Ca, in which optimized geometrical parameters are in good
agreement with the experimental data on Cp*Ca (28).
2
One of the interesting features for main group metallocenes is electron distribution between main group elements and Cp rings. We have evaluated atomic charges and bond populations on the basis of some useful partitioning schemes for the total electron density distributions, such as Mulliken population analysis, NPA, CHelpG, and MKS, and results are shown in Tables 7 and 8. Calculated atomic charges of different elements, such as Li, Mg, and Al, shows
TABLE 7 Calculated Atomic Charges of Some Half-
Sandwich and Full-Sandwich Metallocenes at the
B3LYP/6-31G*//B3LYP/6-31G*
|
|
Mulliken |
NPA |
CHelpG |
MKS |
|
|
|
|
|
|
LiCp |
Q(Li) |
0.154 |
0.902 |
0.439 |
0.451 |
LiCp* |
Q(Li) |
0.176 |
0.916 |
0.499 |
0.540 |
Cp2Li |
Q(Li) |
0.034 |
0.906 |
0.306 |
0.252 |
MgCp |
Q(Mg) |
0.679 |
1.746 |
1.025 |
1.073 |
MgCp* |
Q(Mg) |
0.615 |
1.717 |
1.060 |
1.174 |
Cp2Mg |
Q(Mg) |
0.310 |
1.757 |
0.367 |
0.401 |
AlCp |
Q(Al) |
0.155 |
0.629 |
0.069 |
0.011 |
AlCp* |
Q(Al) |
0.112 |
0.657 |
0.169 |
0.074 |
Cp2Al |
Q(Al) |
0.531 |
1.817 |
0.233 |
0.209 |
|
|
|
|
|
|

Main Group Halfand Full-Sandwich Metallocenes |
419 |
TABLE 8 Calculated Mulliken Bond
Populations and Wiberg Bond Indices of
C(Cp)–E for Some Half-Sandwich and Full-
Sandwich Metallocenes at the B3LYP/6-31G*//
B3LYP/6-31G*
|
Mulliken bond |
Wiberg bond index |
|
population |
from NPA |
|
|
|
LiCp |
0.097 |
0.038 |
LiCp* |
0.104 |
0.032 |
Cp2Li |
0.058 |
0.017 |
MgCp |
0.129 |
0.069 |
MgCp* |
0.128 |
0.099 |
Cp2Mg |
0.102 |
0.045 |
AlCp |
0.036 |
0.138 |
AlCp* |
0.035 |
0.123 |
Cp2Al |
0.115 |
0.197 |
|
|
|
positive charges, as expected. The values of electrostatic charges are between those of Mulliken and NPA charges. Mulliken charges overestimate the polarity of main group elements, while NPA and electrostatic charges give a reasonable interpretation of the electron distribution of main group elements. Mulliken bond populations for metallocenes of Li and Mg show that there is a certain covalent interaction between C(Cp) and E, which is somewhat controversial given that these metallocenes have a large amount of ionic bonding character between C(Cp) and E. On the other hand, the Wiberg bond indices (WBI), which are included in the NBO analysis, shows a reasonable description of C(Cp)–E bonding. Thus, the C(Cp)–Al bonding is predicted to be stronger than C(Cp)–Li and C(Cp)–Mg bonding, which explains why Group 13 metallocenes have larger amount of covalent bond character between carbon and the central atom. When a Cp ligand is replaced by Cp*, the Mulliken bond populations and WBI are changed very little, which implies that methyl substitution on the Cp ring should not significantly influence the nature of bonding of metallocenes.
6. CONCLUSIONS
While metallocenes are often thought to be entirely in the domain of transition metal chemistry, we have shown that main group chemists have a legitimate claim as well. The lack of d orbital participation in the metal–ligand bonding may result in less thermodynamic stability but does not preclude the possibility of novel structural motifs or future ‘‘real-world’’ applications. Computational
420 |
Kwon and McKee |
chemistry is expected to play a very active role in the development of this field, calculating properties of known compounds and predicting properties of unknown compounds. Even at the present stage of computer software and hardware, it can be expected that the calculation of main group metallocene potential energy surfaces will give the experimentalist clues for the successful synthesis of new compounds. We hope that this chapter provides an introduction and motivation to continued explorations in this field. Happy hunting!
7. RECENT DEVELOPMENTS
A series of Group 14 metallocenes with substituted Cp rings [C5Me4(SiMe2But)] was recently reported (87). Single-crystal X-ray structural analysis of each metallocene (E Ge, Sn, Pb) showed that the mixed alkyland silyl-substituted Cp rings are parallel for all three metallocenes (in contrast to most Group 14 with unsubstituted Cp rings). Theoretical calculations at the DFT level indicated that the preference of parallel Cp rings over bent ones is due to the SiR3 substituent
on the Cp rings, which lowers the a* orbital (stereochemically active lone pair)
1g
below the e1u orbital.
REFERENCES
1.C Elschenbroich, A Salzer. Organometallics. Weinheim: VCH Verlagsgesellschaft, 1989.
2.G Wilkinson, M Roseblum, MC Whiting, RB Woodward. J Am Chem Soc 74:2125– 2126, 1952.
3.P Jutzi. J Organomet Chem 400:1–17, 1990.
4.MA Beswick, JS Palmer, DS Wright. Chem Soc Rev 27:225–232, 1998.
5.(a) P Jutzi, N Burford. In: A Togni, RL Halterman, eds. Metallocenes. New York: Wiley-VCH, 1998, pp 3–54. (b) P Jutzi, N Burford. Chem Rev 99:969–990, 1999.
6.DJ Burkey, TP Hanusa. Comments Inorg Chem 17:41–77, 1995.
7.W Bu¨nder, E Weiss. J Organomet Chem 92:1–6, 1975.
8.SG Baxter, AH Cowley, JG Lasch, M Lattman, WP Sharum, CA Stewart. J Am Chem Soc 104:4064–4069, 1982.
9.NT Anh, M Elian, R Hoffmann. J Am Chem Soc 100:110–116, 1978.
10.P Jutzi. Chem Rev 86:983–996, 1986.
11.JD Fisher, PHM Budzelaar, PJ Shapiro, RJ Staples, GPA Yap, AL Rheingold. Organometallics 16:871–879, 1997.
12.JE Huheey, EA Keiter, RL Keiter. Inorganic Chemistry. 4th ed. New York: HarperCollins College, 1993.
13.FP Floss, JC Traeger. J Am Chem Soc 97:1579–1580, 1975.
14.ESJ Robles, AM Ellis, TA Miller. J Phys Chem 96:8791–8801, 1992.
15.WW Schoeller, O Friedrich, A Sundermann, A Rozhenko. Organometallics 18: 2099–2106, 1999.
Main Group Halfand Full-Sandwich Metallocenes |
421 |
16.H Chen, P Jutzi, W Leffers, MM Olmstead, PP Power. Organometallics 10:1282– 1286, 1991.
17.LM Pratt, IM Khan. J Comput Chem 16:1067–1080, 1995.
18.ED Jemmis, PvR Schleyer. J Am Chem Soc 104:4781–4788, 1982.
19.S Harder, MH Prosenc. Angew Chem Int Ed Engl 33:1744–1746, 1994.
20.O Kwon, Y Kown. J Mol Struct (Theochem) 401:133–139, 1997.
21.J Wessel, E Lork, R Mews. Angew Chem Int Ed Engl 34:2376–2378, 1995.
22.S Harder, MH Prosenc, U Rief. Organometallics 15:118–122, 1996.
23.AJ Bridgeman. J Chem Soc Dalton Trans 2887–2893, 1997.
24.ED Jemmis, S Alexandratos, PvR Schleyer, A Streitwieser Jr, HF Schaefer III. J Am Chem Soc 100:5695–5700, 1978.
25.C Wong, TY Lee, S Lee. Acta Crystallogr B28:1662–1665, 1972.
26.J Berthelot, A Luna, J Tortajada. J Phys Chem A 102:6025–6034, 1998.
27.A Haaland, J Lusztyk, J Brunvoll, KB Starowieyski. J Organomet Chem 85:279– 285, 1975.
28.I Bytheway, PLA Popelier, RJ Gillespie. Can J Chem 74:1059–1071, 1996.
29.R Zerger, G Stucky. J Organomet Chem 80:7–17, 1974.
30.M Kaupp, PvR Schleyer, M Dolg, H Stoll. J Am Chem Soc 114:8202–8208, 1992.
31.J Gauss, U Schneider, R Ahlrichs, C Dohmeier, H Schno¨ckel. J Am Chem Soc 115: 2402–2408, 1993.
32.C Dohmeier, H Schno¨ckel, C Robl, U Schneider, R Ahlrichs. Angew Chem Int Ed Engl 32:1655–1657, 1993.
33.D Loos, H Schnoeckel, J Gauss, U Schneider. Angew Chem Int Ed Engl 31:1362– 1364, 1992.
34.E Canadell, O Eisenstein, J Rubio. Organometallics 3:759–764, 1984.
35.DR Armstrong, R Herbst-Irmer, A Kuhn, D. Moncrieff, MA Paver, CA Russell, D Stalke, A Steiner, DS Wright. Angew Chem Int Ed Engl 32:1774–1776, 1993.
36.K Krogh-Jesperson, J Chandrasekhar, PvR Schleyer. J Org Chem 45:1608–1614, 1980.
37.WW Schoeller, O Friedrich, A Sundermann, A Rozhenko. Organometallics 18: 2099–2106, 1999 (Correction: 18: 3554, 1999).
38.A Haaland, B Schilling. Acta Chem Scand A38:217–222, 1984.
39.J Almoef, L Fernholt, K Faegri, Jr, A Haaland, BR Schilling, R Seip, K Taugbol. Acta Chem Scand A37:131–140, 1983.
40.DR Armstrong, MA Beswick, NL Cromhout, CN Harmer, D Moncrieff, CA Russell, PR Raithby, A Steiner, AEH Wheatley, DS Wright. Organometallics 17:3176–3181, 1998.
41.(a) A Almenningen, A Haaland, T Motzfeldt. J Organomet Chem 7:97–104, 1967.
(b) JS Overby, TP Hanusa, VG Young Jr. Inorg Chem 37:163–165, 1998.
42.S Alexandratos, A Streitwieser Jr, HF Schaefer III. J Am Chem Soc 78:7959–7962, 1976.
43.M Lattman, AH Cowley. Inorg Chem 23:241–247, 1984.
44.KC Watermann, A Streitwieser. J Am Chem Soc 106:3138–3140, 1984.
45.LA Paquette, W Bauer, MR Sivik, M Bu¨hl, M Feigel, PvR Schleyer. J Am Chem Soc 112:8776–8789, 1990.
46.R Blom, K Faegri, Jr, T Midtgaard. J Am Chem Soc 113:3230–3235, 1991.
422 |
Kwon and McKee |
47.A Almenningen, A Haaland, J Lusztyk. J Organomet Chem 170:271–284, 1979.
48.LW Mire, SD Wheeler, E Wagenseller, DS Marynick. Inorg Chem, 37:3099–3106, 1998.
49.FA Cotton, G Wilkinson. Advanced Inorganic Chemistry. 3rd ed. New York, WileyInterscience, 1972.
50.JP Foster, F Weinhold. J Am Chem Soc 102:7211–7218, 1980.
51.K Faegri, Jr, J Almoef, HP Lu¨thi. J Organomet Chem 249:303–313, 1983.
52.P Jutzi, A Seufert. J Organomet Chem 161:C5–C7, 1978.
53.A Haaland, K-G Martinsen, SA Shlykov, HV Volden, C Dohmeier, H Schno¨ckel. Organometallics 14:3116–3119, 1995.
54.C Dohmeier, D Loos, H Schno¨ckel. Angew Chem Int Ed Engl 35:129–149, 1996.
55.M Bochmann, DM Dawson. Angew Chem Int Ed Engl 35:2226–2228, 1996.
56.A Haaland, K-G Martinsen, HV Volden, D Loos, H Schno¨ckel. Acta Chem Scand 48:172–174, 1994.
57.YS Nekrasov, VF Sizoi, DV Zagorevskii, YA Borisov. J Organomet Chem 205: 157–160, 1981.
58.C Pannattoni, G Bombieri, U Croatto. Acta Crystallogr 21, 823–826, 1966.
59.P Jutzi, D Kanne, C Kru¨ger. Angew Chem, Int Ed Engl 25:164, 1986.
60.M Grenz, E Hahn, W-W du Mont, J Pickardt. Angew Chem, Int Ed Engl 23:61– 63, 1984.
61.MJ Heeg, C Janiak, JJ Zuckerman. J Am Chem Soc 106:4259–4261, 1984.
62.P Jutzi, F Kohl, P Hofmann, C Kru¨ger, Y-H Tsay. Chem Ber 113:757–769, 1980.
63.TJ Lee, JE Rice. J Am Chem Soc 111:2011–2017, 1989.
64.MJS Dewar, WJ Thiel. J Am Chem Soc 99:4899–4907, 1977.
65.MJS Dewar, EG Zoebisch, EF Healy, JJP Stewart. J Am Chem Soc 107:3902–3909, 1985.
66.JJP Stewart. J Comput Chem 10:209–220, 1989.
67.JA Pople, DP Santry, GA Segal. J Chem Phys 43:S129–S135, 1965.
68.JJP Stewart. ‘‘MOPAC2000,’’ Fujitsu Limited, Tokyo, Japan, 1999.
69.Gaussian 98 (Revision A4). MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, VG Zakrzewski, JA Montgomery, Jr, RE Stratmann, JC Burant, S Dapprich, JM Millam, AD Daniels, KN Kudin, MC Strain, O Farkas, J Tomasi, V Barone, M Cossi, R Cammi, B Mennucci, C Pomelli, C Adamo, S Clifford, J Ochterski, GA Petersson, PY Ayala, Q Cui, K Morokuma, DK Malick, AD Rabuck, K Raghavachari, JB Foresman, J Cioslowski, JV Ortiz, BB Stefanov, G Liu, A Liashenko, P Piskorz, I Komaromi, R Gomperts, RL Martin, DJ Fox, T Keith, MA AlLaham, CY Peng, A Nanayakkara, C Gonzalez, M Challacombe, PMW Gill, B Johnson, W Chen, MW Wong, JL Andres, M Head-Gordon, ES Replogle, JA Pople. Gaussian, Inc, Pittsburgh PA, 1998.
70.WJ Hehre, L Radom, PvR Schleyer, JA Pople. Ab Initio Molecular Orbital Theory. New York: Wiley, 1986.
71.RG Parr, W Yang. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989.
72.AA El-Azhary, HU Suter. J Phys Chem 100:15056–15063, 1996.
73.R Blom, K Faegri Jr, HV Volden. Organometallics 9:372–379, 1990.
74.TP Hanusa. Chem Rev 93:1023–1036, 1993.
Main Group Halfand Full-Sandwich Metallocenes |
423 |
75.D Feller, ER Davidson. In: KB Lipkowitz, DB Boyd, eds. Reviews in Computational Chemistry. New York: VCH, 1996, pp 1–45.
76.PJ Hay, WR Wadt. J Chem Phys 82:270–310, 1985.
77.WJ Stevens, H Basch, M Krauss. J Chem Phys 81:6026–6033, 1984.
78.M Dolg, U Wedig, H Stoll, H Preuss. J Chem Phys 86:866–872, 1987.
79.(a) G Frenking, I. Antes, M. Bo¨hme, S. Dapprich, AW Ehlers, V Jonas, A Neuhaus, M Otto, R Stegmann, A Veldkamp, SF Vyboishchikov. In: KB Lipkowitz, DB Boyd, eds. Reviews in Computational Chemistry. New York: VCH, 1996, pp 63–144. (b) TR Cundari, MT Benson, ML Lutz, SO Sommerer. In: KB Lipkowitz, DB Boyd, eds. Reviews in Computational Chemistry. New York: VCH, 1996, pp 145–202.
80.C Lambert, PvR Schleyer. Angew Chem, Int Ed Engl 33:1129–1140, 1994.
81.CM Breneman, KB Wiberg. J Comput Chem 11:361–373, 1990.
82.BH Besler, KM Merz Jr, PA Kollman. J Comput Chem 11:431–439, 1990.
83.W Kutzelnigg. Isr J Chem 19:193–200, 1980.
84.HF Hameka. Mol Phys 1:203–215, 1958.
85.R Ditchfield. Mol Phys 27:789–807, 1974.
86.R Blom, J Boersma, PHM Budzelaar, B Fischer, A Haaland, HV Volden, J Weidlein. J Acta Chem Scand A40:113–120, 1986.
87.SP Constantine, H Cox, PB Hitchcock, GA Lawless. Organometallics 19:317–326, 2000.

Index
Actinide contraction, 357 Agostic, 163, 164
AIDS (acquired immunodeficiency syndrome), 185
AIMPs (ab initio model potentials), 71, 73, 126
All-electron basis sets, 113, 276, 286, 414
Allylation, 248 (-)-Androst-4-ene-3,16-dione, 205, 213 Angular overlap model, 143
Austin method 1 (AM1), 410 Avian sarcoma virus (ASV), 195 Avoided crossing, 296
B3LYP, 7, 17, 18, 74, 93, 266, 284, 311, 313, 324, 384, 406, 409, 416 Basis set superposition error (BSSE),
414
Bent’s rule, 389 Binding affinity, 196 BINOL, 215
Blue copper proteins, 147 BLYP, 307, 313, 324, 413 BP86, 74, 76
Buckingham potential, 43, 44
CASPT2 (complete active space— second order perturbation theory), 125, 126, 129, 139, 151, 283
CASSCF (complete active space SCF), 124, 133, 143, 151, 277, 284, 312
Catalysis, 95, 323
CCSD(T)-coupled clusters, 70, 74, 76, 94, 125, 277, 281, 284, 311, 325, 340, 349, 384
C-H insertion, 217 CHelpG, 33
425
426
CHIRAPHOS, 244 Cone-angle profile, 51
Cone-angle radial profile (CARP), 52, 53
Conformational searching, 240, 263 Conical intersections, 295 Correlation energy, 146 Correlation functional, 72 CpRh(CO), 49
Cr(CO)5L, 45, 46, 61, 65 Cr(NO)4, 152
Crossing point, 308 Crossing seam, 309
Crystal distortion energy, 16 CT (charge transfer), 130, 143 Cycloaddition, 34, 99 Cyclometallation, 205 Cyclozirconation, 207
DFT (density functional theory), 18, 247, 284, 316, 323, 324, 336, 340, 347, 349, 372, 405, 410
Dihydrogen complexes, 337 Dihydroxylation catalyst, 178, 180, 248 Dimerization, 394
Dirhodium carboxylates, 218, 226, 227, 233
Distributed data interface (DDI), 278 DKH (Douglas-Kroll-Hess), 80 Docking, 196
D-orbital splitting, 292 Double group, 362
Double shell effect, 125, 130, 147, 155 DPT (direct perturbation theory), 83, 88 DV-Xa (discrete variational Xa), 349 Dynamic correlation, 125, 347, 349
ECP (effective core potential), 18, 70, 73, 76, 194, 113, 276, 286, 307, 315, 325, 384, 389, 414
Electron transfer, 298 ( )-Elemol, 210 Epoxidation, 104, 248
Fe(CO)5, 293
Ferrocene, 345
Index
Flavones, 188 Force field, 8
Fourier transform, 197
Fully optimized reaction space (FORS), 277, 279
Genetic algorithms, 239
GIAO (gauge-including atomic orbital), 108, 109, 113, 415
Group 16 ligands, 88
(-)-Haliclonadiamine, 209 Heme, 165, 300
Hessian, 17, 27
Hexacarbonyls, 74, 109, 148, 151
HF (Hartree-Fock), 194, 285, 384, 410 HIV-1 (human immunodeficiency vi-
rus), 185
HIV-1 protease, 185, 186, 250 Hydrocyanation, 250 Hydrodesulfurization, 250 Hydroformylation, 250, 251 Hydrogenation, 240, 241, 251, 382, 394 Hydrosilation, 275
Hydroxylation, 251
IGLO (individual gauge for localized orbital), 108, 109, 113, 415
Inert-pair effect, 407 Integrase, 185
Integrated molecular orbital/molecular mechanics (IMOMM), 160, 170 Integrated molecular orbital/molecular
orbital (IMOMO), 160 Ionization potentials, 135 Ir(biph)(X)(QR3)2, 175
Jahn-Teller effect, 383
Kohn-Sham orbitals, 350
Koopmans’ theorem, 135
Lagrange multipliers, 25, 26 Landau-Zener formula, 296
LDA (local density approximation), 351 Lennard-Jones potential, 42, 43
Index
Ligand association, 300 Ligand design, 252 Ligand dissocation, 300
Ligand field theory (LFT), 143, 146 Ligand repulsive energy (Er), 40, 44 Light-induced excited spin-state trap-
ping, 299
Linear free energy relationship (LFER), 39
LMCT (ligand-to-metal charge transfer), 130, 143, 153
Macromodel, 32, 33
MCPF (modified coupled-pair functional), 125
MCSCF (multiconfiguration SCF), 277, 278, 283, 317, 356
Metallocarbohedrenes, 275 Metallocene, 397 Metathesis, 253 MINDO/3, 64
Minimum energy crossing point, 309, 310, 318
Miroiterations, 169, 170
MLCT (metal-to-ligand charge transfer), 130, 148, 153, 155
MM2, 41, 64, 65
MM3, 32, 41, 42 MM4, 42 MMP2, 45, 65
MNDO (modified neglect of differential overlap), 64, 410
MnRe(CO)10, 61
Monte Carlo, 45, 197, 240, 263
MP2 (Moller-Plesset second order perturbation theory), 7, 17, 70, 93, 123, 125, 277, 281, 324, 349, 356, 406, 408, 410, 411
Mulliken population analysis, 389, 407, 408, 414
Natural orbital occupation numbers, 283 NDDO (neglect of diatomic differential
overlap), 410 Nephelauxetic effect, 146 Neural networks, 239
427
Newton–Raphson, 19, 24, 25 Ni(CO)3L, 49
Nitrido complexes, 90, 92 NMR chemical shifts, 108, 415 Noble gas complexes, 83
Nonadiabatic chemistry, 291, 294 Nonbonded parameters, 21 Nonbonded potential, 42 Nondynamic electron correlation, 123,
124, 140, 147, 155 Nonlocal-DFT, 70
Nonlocal exchange functional, 72 NPA (natural population analysis), 414
Olefin complex, 244 ONIOM, 160 Organoactinide, 345
Ortho-metalated phosphines, 229 Oxidative addition, 102, 301, 331
Parameter tethering, 28 Parameterization, 12, 238, 248, 249 Partial optimization, 307, 308 Pauli Hamiltonian, 352
Pd-olefin complex, 33
Penalty function, 20, 22, 23, 25, 26, 30 Pentacarbonyl complexes, 83 Phosphido complexes, 90
Phosphine complexes, 86, 241, 330, 407
Pi bonding, 381, 382, 395
PM3 (parameterization method 3), 33, 192, 410, 411, 416
Points on a sphere (POS), 14, 32, 33 Polymerization, 253
Potential energy surface (PES), 293, 294, 415
Protein DataBank, 198 PW91, 353, 355, 359, 368
Quantum mechanics-guided molecular mechanics (Q2MM), 13, 18, 34
Quantum mechanics/molecular mechanics (QM/MM), 34, 159, 161, 169, 181