Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Cundari Th.R. -- Computational Organometallic Chemistry-0824704789

.pdf
Скачиваний:
80
Добавлен:
08.01.2014
Размер:
4.83 Mб
Скачать

418

Kwon and McKee

TABLE 6 Optimized Distances of Cp–E for LiCp, LiCp*,

MgCp, [MgCp*] , AlCp, and AlCp* at Various

˚

Theoretical Levels (distance in A, angle in degrees)

 

PM3

HF/6-31G*

B3LYP/6-31G*

LiCp

1.956

1.765

1.730

LiCp*

2.007

1.748

1.717

MgCp

2.039

1.908

1.881

MgCp*

2.058

1.888

1.864

AlCp

2.173

2.050

2.065

AlCp*

2.197

2.008

2.022

 

 

 

 

The effects caused by methyl substitution (Cp Cp*) on the main structural features of metallocenes are shown in Table 6. Comparison of calculated Cp–E distance between Cp-containing half-sandwich metallocenes and Cp*-con- taining half-sandwich metallocenes suggests that methyl substitutions on the Cp rings has little affect on Cp–E distances. This fact is also supported by previous calculations of Cp2Ca, in which optimized geometrical parameters are in good

agreement with the experimental data on Cp*Ca (28).

2

One of the interesting features for main group metallocenes is electron distribution between main group elements and Cp rings. We have evaluated atomic charges and bond populations on the basis of some useful partitioning schemes for the total electron density distributions, such as Mulliken population analysis, NPA, CHelpG, and MKS, and results are shown in Tables 7 and 8. Calculated atomic charges of different elements, such as Li, Mg, and Al, shows

TABLE 7 Calculated Atomic Charges of Some Half-

Sandwich and Full-Sandwich Metallocenes at the

B3LYP/6-31G*//B3LYP/6-31G*

 

 

Mulliken

NPA

CHelpG

MKS

 

 

 

 

 

 

LiCp

Q(Li)

0.154

0.902

0.439

0.451

LiCp*

Q(Li)

0.176

0.916

0.499

0.540

Cp2Li

Q(Li)

0.034

0.906

0.306

0.252

MgCp

Q(Mg)

0.679

1.746

1.025

1.073

MgCp*

Q(Mg)

0.615

1.717

1.060

1.174

Cp2Mg

Q(Mg)

0.310

1.757

0.367

0.401

AlCp

Q(Al)

0.155

0.629

0.069

0.011

AlCp*

Q(Al)

0.112

0.657

0.169

0.074

Cp2Al

Q(Al)

0.531

1.817

0.233

0.209

 

 

 

 

 

 

Main Group Halfand Full-Sandwich Metallocenes

419

TABLE 8 Calculated Mulliken Bond

Populations and Wiberg Bond Indices of

C(Cp)–E for Some Half-Sandwich and Full-

Sandwich Metallocenes at the B3LYP/6-31G*//

B3LYP/6-31G*

 

Mulliken bond

Wiberg bond index

 

population

from NPA

 

 

 

LiCp

0.097

0.038

LiCp*

0.104

0.032

Cp2Li

0.058

0.017

MgCp

0.129

0.069

MgCp*

0.128

0.099

Cp2Mg

0.102

0.045

AlCp

0.036

0.138

AlCp*

0.035

0.123

Cp2Al

0.115

0.197

 

 

 

positive charges, as expected. The values of electrostatic charges are between those of Mulliken and NPA charges. Mulliken charges overestimate the polarity of main group elements, while NPA and electrostatic charges give a reasonable interpretation of the electron distribution of main group elements. Mulliken bond populations for metallocenes of Li and Mg show that there is a certain covalent interaction between C(Cp) and E, which is somewhat controversial given that these metallocenes have a large amount of ionic bonding character between C(Cp) and E. On the other hand, the Wiberg bond indices (WBI), which are included in the NBO analysis, shows a reasonable description of C(Cp)–E bonding. Thus, the C(Cp)–Al bonding is predicted to be stronger than C(Cp)–Li and C(Cp)–Mg bonding, which explains why Group 13 metallocenes have larger amount of covalent bond character between carbon and the central atom. When a Cp ligand is replaced by Cp*, the Mulliken bond populations and WBI are changed very little, which implies that methyl substitution on the Cp ring should not significantly influence the nature of bonding of metallocenes.

6. CONCLUSIONS

While metallocenes are often thought to be entirely in the domain of transition metal chemistry, we have shown that main group chemists have a legitimate claim as well. The lack of d orbital participation in the metal–ligand bonding may result in less thermodynamic stability but does not preclude the possibility of novel structural motifs or future ‘‘real-world’’ applications. Computational

420

Kwon and McKee

chemistry is expected to play a very active role in the development of this field, calculating properties of known compounds and predicting properties of unknown compounds. Even at the present stage of computer software and hardware, it can be expected that the calculation of main group metallocene potential energy surfaces will give the experimentalist clues for the successful synthesis of new compounds. We hope that this chapter provides an introduction and motivation to continued explorations in this field. Happy hunting!

7. RECENT DEVELOPMENTS

A series of Group 14 metallocenes with substituted Cp rings [C5Me4(SiMe2But)] was recently reported (87). Single-crystal X-ray structural analysis of each metallocene (E Ge, Sn, Pb) showed that the mixed alkyland silyl-substituted Cp rings are parallel for all three metallocenes (in contrast to most Group 14 with unsubstituted Cp rings). Theoretical calculations at the DFT level indicated that the preference of parallel Cp rings over bent ones is due to the SiR3 substituent

on the Cp rings, which lowers the a* orbital (stereochemically active lone pair)

1g

below the e1u orbital.

REFERENCES

1.C Elschenbroich, A Salzer. Organometallics. Weinheim: VCH Verlagsgesellschaft, 1989.

2.G Wilkinson, M Roseblum, MC Whiting, RB Woodward. J Am Chem Soc 74:2125– 2126, 1952.

3.P Jutzi. J Organomet Chem 400:1–17, 1990.

4.MA Beswick, JS Palmer, DS Wright. Chem Soc Rev 27:225–232, 1998.

5.(a) P Jutzi, N Burford. In: A Togni, RL Halterman, eds. Metallocenes. New York: Wiley-VCH, 1998, pp 3–54. (b) P Jutzi, N Burford. Chem Rev 99:969–990, 1999.

6.DJ Burkey, TP Hanusa. Comments Inorg Chem 17:41–77, 1995.

7.W Bu¨nder, E Weiss. J Organomet Chem 92:1–6, 1975.

8.SG Baxter, AH Cowley, JG Lasch, M Lattman, WP Sharum, CA Stewart. J Am Chem Soc 104:4064–4069, 1982.

9.NT Anh, M Elian, R Hoffmann. J Am Chem Soc 100:110–116, 1978.

10.P Jutzi. Chem Rev 86:983–996, 1986.

11.JD Fisher, PHM Budzelaar, PJ Shapiro, RJ Staples, GPA Yap, AL Rheingold. Organometallics 16:871–879, 1997.

12.JE Huheey, EA Keiter, RL Keiter. Inorganic Chemistry. 4th ed. New York: HarperCollins College, 1993.

13.FP Floss, JC Traeger. J Am Chem Soc 97:1579–1580, 1975.

14.ESJ Robles, AM Ellis, TA Miller. J Phys Chem 96:8791–8801, 1992.

15.WW Schoeller, O Friedrich, A Sundermann, A Rozhenko. Organometallics 18: 2099–2106, 1999.

Main Group Halfand Full-Sandwich Metallocenes

421

16.H Chen, P Jutzi, W Leffers, MM Olmstead, PP Power. Organometallics 10:1282– 1286, 1991.

17.LM Pratt, IM Khan. J Comput Chem 16:1067–1080, 1995.

18.ED Jemmis, PvR Schleyer. J Am Chem Soc 104:4781–4788, 1982.

19.S Harder, MH Prosenc. Angew Chem Int Ed Engl 33:1744–1746, 1994.

20.O Kwon, Y Kown. J Mol Struct (Theochem) 401:133–139, 1997.

21.J Wessel, E Lork, R Mews. Angew Chem Int Ed Engl 34:2376–2378, 1995.

22.S Harder, MH Prosenc, U Rief. Organometallics 15:118–122, 1996.

23.AJ Bridgeman. J Chem Soc Dalton Trans 2887–2893, 1997.

24.ED Jemmis, S Alexandratos, PvR Schleyer, A Streitwieser Jr, HF Schaefer III. J Am Chem Soc 100:5695–5700, 1978.

25.C Wong, TY Lee, S Lee. Acta Crystallogr B28:1662–1665, 1972.

26.J Berthelot, A Luna, J Tortajada. J Phys Chem A 102:6025–6034, 1998.

27.A Haaland, J Lusztyk, J Brunvoll, KB Starowieyski. J Organomet Chem 85:279– 285, 1975.

28.I Bytheway, PLA Popelier, RJ Gillespie. Can J Chem 74:1059–1071, 1996.

29.R Zerger, G Stucky. J Organomet Chem 80:7–17, 1974.

30.M Kaupp, PvR Schleyer, M Dolg, H Stoll. J Am Chem Soc 114:8202–8208, 1992.

31.J Gauss, U Schneider, R Ahlrichs, C Dohmeier, H Schno¨ckel. J Am Chem Soc 115: 2402–2408, 1993.

32.C Dohmeier, H Schno¨ckel, C Robl, U Schneider, R Ahlrichs. Angew Chem Int Ed Engl 32:1655–1657, 1993.

33.D Loos, H Schnoeckel, J Gauss, U Schneider. Angew Chem Int Ed Engl 31:1362– 1364, 1992.

34.E Canadell, O Eisenstein, J Rubio. Organometallics 3:759–764, 1984.

35.DR Armstrong, R Herbst-Irmer, A Kuhn, D. Moncrieff, MA Paver, CA Russell, D Stalke, A Steiner, DS Wright. Angew Chem Int Ed Engl 32:1774–1776, 1993.

36.K Krogh-Jesperson, J Chandrasekhar, PvR Schleyer. J Org Chem 45:1608–1614, 1980.

37.WW Schoeller, O Friedrich, A Sundermann, A Rozhenko. Organometallics 18: 2099–2106, 1999 (Correction: 18: 3554, 1999).

38.A Haaland, B Schilling. Acta Chem Scand A38:217–222, 1984.

39.J Almoef, L Fernholt, K Faegri, Jr, A Haaland, BR Schilling, R Seip, K Taugbol. Acta Chem Scand A37:131–140, 1983.

40.DR Armstrong, MA Beswick, NL Cromhout, CN Harmer, D Moncrieff, CA Russell, PR Raithby, A Steiner, AEH Wheatley, DS Wright. Organometallics 17:3176–3181, 1998.

41.(a) A Almenningen, A Haaland, T Motzfeldt. J Organomet Chem 7:97–104, 1967.

(b) JS Overby, TP Hanusa, VG Young Jr. Inorg Chem 37:163–165, 1998.

42.S Alexandratos, A Streitwieser Jr, HF Schaefer III. J Am Chem Soc 78:7959–7962, 1976.

43.M Lattman, AH Cowley. Inorg Chem 23:241–247, 1984.

44.KC Watermann, A Streitwieser. J Am Chem Soc 106:3138–3140, 1984.

45.LA Paquette, W Bauer, MR Sivik, M Bu¨hl, M Feigel, PvR Schleyer. J Am Chem Soc 112:8776–8789, 1990.

46.R Blom, K Faegri, Jr, T Midtgaard. J Am Chem Soc 113:3230–3235, 1991.

422

Kwon and McKee

47.A Almenningen, A Haaland, J Lusztyk. J Organomet Chem 170:271–284, 1979.

48.LW Mire, SD Wheeler, E Wagenseller, DS Marynick. Inorg Chem, 37:3099–3106, 1998.

49.FA Cotton, G Wilkinson. Advanced Inorganic Chemistry. 3rd ed. New York, WileyInterscience, 1972.

50.JP Foster, F Weinhold. J Am Chem Soc 102:7211–7218, 1980.

51.K Faegri, Jr, J Almoef, HP Lu¨thi. J Organomet Chem 249:303–313, 1983.

52.P Jutzi, A Seufert. J Organomet Chem 161:C5–C7, 1978.

53.A Haaland, K-G Martinsen, SA Shlykov, HV Volden, C Dohmeier, H Schno¨ckel. Organometallics 14:3116–3119, 1995.

54.C Dohmeier, D Loos, H Schno¨ckel. Angew Chem Int Ed Engl 35:129–149, 1996.

55.M Bochmann, DM Dawson. Angew Chem Int Ed Engl 35:2226–2228, 1996.

56.A Haaland, K-G Martinsen, HV Volden, D Loos, H Schno¨ckel. Acta Chem Scand 48:172–174, 1994.

57.YS Nekrasov, VF Sizoi, DV Zagorevskii, YA Borisov. J Organomet Chem 205: 157–160, 1981.

58.C Pannattoni, G Bombieri, U Croatto. Acta Crystallogr 21, 823–826, 1966.

59.P Jutzi, D Kanne, C Kru¨ger. Angew Chem, Int Ed Engl 25:164, 1986.

60.M Grenz, E Hahn, W-W du Mont, J Pickardt. Angew Chem, Int Ed Engl 23:61– 63, 1984.

61.MJ Heeg, C Janiak, JJ Zuckerman. J Am Chem Soc 106:4259–4261, 1984.

62.P Jutzi, F Kohl, P Hofmann, C Kru¨ger, Y-H Tsay. Chem Ber 113:757–769, 1980.

63.TJ Lee, JE Rice. J Am Chem Soc 111:2011–2017, 1989.

64.MJS Dewar, WJ Thiel. J Am Chem Soc 99:4899–4907, 1977.

65.MJS Dewar, EG Zoebisch, EF Healy, JJP Stewart. J Am Chem Soc 107:3902–3909, 1985.

66.JJP Stewart. J Comput Chem 10:209–220, 1989.

67.JA Pople, DP Santry, GA Segal. J Chem Phys 43:S129–S135, 1965.

68.JJP Stewart. ‘‘MOPAC2000,’’ Fujitsu Limited, Tokyo, Japan, 1999.

69.Gaussian 98 (Revision A4). MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, VG Zakrzewski, JA Montgomery, Jr, RE Stratmann, JC Burant, S Dapprich, JM Millam, AD Daniels, KN Kudin, MC Strain, O Farkas, J Tomasi, V Barone, M Cossi, R Cammi, B Mennucci, C Pomelli, C Adamo, S Clifford, J Ochterski, GA Petersson, PY Ayala, Q Cui, K Morokuma, DK Malick, AD Rabuck, K Raghavachari, JB Foresman, J Cioslowski, JV Ortiz, BB Stefanov, G Liu, A Liashenko, P Piskorz, I Komaromi, R Gomperts, RL Martin, DJ Fox, T Keith, MA AlLaham, CY Peng, A Nanayakkara, C Gonzalez, M Challacombe, PMW Gill, B Johnson, W Chen, MW Wong, JL Andres, M Head-Gordon, ES Replogle, JA Pople. Gaussian, Inc, Pittsburgh PA, 1998.

70.WJ Hehre, L Radom, PvR Schleyer, JA Pople. Ab Initio Molecular Orbital Theory. New York: Wiley, 1986.

71.RG Parr, W Yang. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989.

72.AA El-Azhary, HU Suter. J Phys Chem 100:15056–15063, 1996.

73.R Blom, K Faegri Jr, HV Volden. Organometallics 9:372–379, 1990.

74.TP Hanusa. Chem Rev 93:1023–1036, 1993.

Main Group Halfand Full-Sandwich Metallocenes

423

75.D Feller, ER Davidson. In: KB Lipkowitz, DB Boyd, eds. Reviews in Computational Chemistry. New York: VCH, 1996, pp 1–45.

76.PJ Hay, WR Wadt. J Chem Phys 82:270–310, 1985.

77.WJ Stevens, H Basch, M Krauss. J Chem Phys 81:6026–6033, 1984.

78.M Dolg, U Wedig, H Stoll, H Preuss. J Chem Phys 86:866–872, 1987.

79.(a) G Frenking, I. Antes, M. Bo¨hme, S. Dapprich, AW Ehlers, V Jonas, A Neuhaus, M Otto, R Stegmann, A Veldkamp, SF Vyboishchikov. In: KB Lipkowitz, DB Boyd, eds. Reviews in Computational Chemistry. New York: VCH, 1996, pp 63–144. (b) TR Cundari, MT Benson, ML Lutz, SO Sommerer. In: KB Lipkowitz, DB Boyd, eds. Reviews in Computational Chemistry. New York: VCH, 1996, pp 145–202.

80.C Lambert, PvR Schleyer. Angew Chem, Int Ed Engl 33:1129–1140, 1994.

81.CM Breneman, KB Wiberg. J Comput Chem 11:361–373, 1990.

82.BH Besler, KM Merz Jr, PA Kollman. J Comput Chem 11:431–439, 1990.

83.W Kutzelnigg. Isr J Chem 19:193–200, 1980.

84.HF Hameka. Mol Phys 1:203–215, 1958.

85.R Ditchfield. Mol Phys 27:789–807, 1974.

86.R Blom, J Boersma, PHM Budzelaar, B Fischer, A Haaland, HV Volden, J Weidlein. J Acta Chem Scand A40:113–120, 1986.

87.SP Constantine, H Cox, PB Hitchcock, GA Lawless. Organometallics 19:317–326, 2000.

Index

Actinide contraction, 357 Agostic, 163, 164

AIDS (acquired immunodeficiency syndrome), 185

AIMPs (ab initio model potentials), 71, 73, 126

All-electron basis sets, 113, 276, 286, 414

Allylation, 248 (-)-Androst-4-ene-3,16-dione, 205, 213 Angular overlap model, 143

Austin method 1 (AM1), 410 Avian sarcoma virus (ASV), 195 Avoided crossing, 296

B3LYP, 7, 17, 18, 74, 93, 266, 284, 311, 313, 324, 384, 406, 409, 416 Basis set superposition error (BSSE),

414

Bent’s rule, 389 Binding affinity, 196 BINOL, 215

Blue copper proteins, 147 BLYP, 307, 313, 324, 413 BP86, 74, 76

Buckingham potential, 43, 44

CASPT2 (complete active space— second order perturbation theory), 125, 126, 129, 139, 151, 283

CASSCF (complete active space SCF), 124, 133, 143, 151, 277, 284, 312

Catalysis, 95, 323

CCSD(T)-coupled clusters, 70, 74, 76, 94, 125, 277, 281, 284, 311, 325, 340, 349, 384

C-H insertion, 217 CHelpG, 33

425

426

CHIRAPHOS, 244 Cone-angle profile, 51

Cone-angle radial profile (CARP), 52, 53

Conformational searching, 240, 263 Conical intersections, 295 Correlation energy, 146 Correlation functional, 72 CpRh(CO), 49

Cr(CO)5L, 45, 46, 61, 65 Cr(NO)4, 152

Crossing point, 308 Crossing seam, 309

Crystal distortion energy, 16 CT (charge transfer), 130, 143 Cycloaddition, 34, 99 Cyclometallation, 205 Cyclozirconation, 207

DFT (density functional theory), 18, 247, 284, 316, 323, 324, 336, 340, 347, 349, 372, 405, 410

Dihydrogen complexes, 337 Dihydroxylation catalyst, 178, 180, 248 Dimerization, 394

Dirhodium carboxylates, 218, 226, 227, 233

Distributed data interface (DDI), 278 DKH (Douglas-Kroll-Hess), 80 Docking, 196

D-orbital splitting, 292 Double group, 362

Double shell effect, 125, 130, 147, 155 DPT (direct perturbation theory), 83, 88 DV-Xa (discrete variational Xa), 349 Dynamic correlation, 125, 347, 349

ECP (effective core potential), 18, 70, 73, 76, 194, 113, 276, 286, 307, 315, 325, 384, 389, 414

Electron transfer, 298 ( )-Elemol, 210 Epoxidation, 104, 248

Fe(CO)5, 293

Ferrocene, 345

Index

Flavones, 188 Force field, 8

Fourier transform, 197

Fully optimized reaction space (FORS), 277, 279

Genetic algorithms, 239

GIAO (gauge-including atomic orbital), 108, 109, 113, 415

Group 16 ligands, 88

(-)-Haliclonadiamine, 209 Heme, 165, 300

Hessian, 17, 27

Hexacarbonyls, 74, 109, 148, 151

HF (Hartree-Fock), 194, 285, 384, 410 HIV-1 (human immunodeficiency vi-

rus), 185

HIV-1 protease, 185, 186, 250 Hydrocyanation, 250 Hydrodesulfurization, 250 Hydroformylation, 250, 251 Hydrogenation, 240, 241, 251, 382, 394 Hydrosilation, 275

Hydroxylation, 251

IGLO (individual gauge for localized orbital), 108, 109, 113, 415

Inert-pair effect, 407 Integrase, 185

Integrated molecular orbital/molecular mechanics (IMOMM), 160, 170 Integrated molecular orbital/molecular

orbital (IMOMO), 160 Ionization potentials, 135 Ir(biph)(X)(QR3)2, 175

Jahn-Teller effect, 383

Kohn-Sham orbitals, 350

Koopmans’ theorem, 135

Lagrange multipliers, 25, 26 Landau-Zener formula, 296

LDA (local density approximation), 351 Lennard-Jones potential, 42, 43

Index

Ligand association, 300 Ligand design, 252 Ligand dissocation, 300

Ligand field theory (LFT), 143, 146 Ligand repulsive energy (Er), 40, 44 Light-induced excited spin-state trap-

ping, 299

Linear free energy relationship (LFER), 39

LMCT (ligand-to-metal charge transfer), 130, 143, 153

Macromodel, 32, 33

MCPF (modified coupled-pair functional), 125

MCSCF (multiconfiguration SCF), 277, 278, 283, 317, 356

Metallocarbohedrenes, 275 Metallocene, 397 Metathesis, 253 MINDO/3, 64

Minimum energy crossing point, 309, 310, 318

Miroiterations, 169, 170

MLCT (metal-to-ligand charge transfer), 130, 148, 153, 155

MM2, 41, 64, 65

MM3, 32, 41, 42 MM4, 42 MMP2, 45, 65

MNDO (modified neglect of differential overlap), 64, 410

MnRe(CO)10, 61

Monte Carlo, 45, 197, 240, 263

MP2 (Moller-Plesset second order perturbation theory), 7, 17, 70, 93, 123, 125, 277, 281, 324, 349, 356, 406, 408, 410, 411

Mulliken population analysis, 389, 407, 408, 414

Natural orbital occupation numbers, 283 NDDO (neglect of diatomic differential

overlap), 410 Nephelauxetic effect, 146 Neural networks, 239

427

Newton–Raphson, 19, 24, 25 Ni(CO)3L, 49

Nitrido complexes, 90, 92 NMR chemical shifts, 108, 415 Noble gas complexes, 83

Nonadiabatic chemistry, 291, 294 Nonbonded parameters, 21 Nonbonded potential, 42 Nondynamic electron correlation, 123,

124, 140, 147, 155 Nonlocal-DFT, 70

Nonlocal exchange functional, 72 NPA (natural population analysis), 414

Olefin complex, 244 ONIOM, 160 Organoactinide, 345

Ortho-metalated phosphines, 229 Oxidative addition, 102, 301, 331

Parameter tethering, 28 Parameterization, 12, 238, 248, 249 Partial optimization, 307, 308 Pauli Hamiltonian, 352

Pd-olefin complex, 33

Penalty function, 20, 22, 23, 25, 26, 30 Pentacarbonyl complexes, 83 Phosphido complexes, 90

Phosphine complexes, 86, 241, 330, 407

Pi bonding, 381, 382, 395

PM3 (parameterization method 3), 33, 192, 410, 411, 416

Points on a sphere (POS), 14, 32, 33 Polymerization, 253

Potential energy surface (PES), 293, 294, 415

Protein DataBank, 198 PW91, 353, 355, 359, 368

Quantum mechanics-guided molecular mechanics (Q2MM), 13, 18, 34

Quantum mechanics/molecular mechanics (QM/MM), 34, 159, 161, 169, 181

Соседние файлы в предмете Химия