Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Cundari Th.R. -- Computational Organometallic Chemistry-0824704789

.pdf
Скачиваний:
81
Добавлен:
08.01.2014
Размер:
4.83 Mб
Скачать

TABLE 1

Summary of the Application of Molecular Mechanics to Organometallic Catalysis, with Examples

 

Reaction

 

 

Catalyst

Program

Force field

 

 

Added parameters

Purpose

 

Ref.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Allylation

 

3

-Allyl palladium com-

MacMimic

MM2

3

-Allyl-Pd interaction

Model the stereoselectivity

93

 

η

η

 

 

 

plexes with chiral

 

 

 

(91,92)

 

 

in complexes with confor-

 

 

 

 

phenanthroline li-

 

 

 

 

 

 

 

mationally flexible li-

 

 

 

 

gands

 

 

 

 

 

 

 

 

gands in asymmetric ally-

 

 

 

 

 

 

 

 

 

 

 

 

 

lation

 

 

 

Allylation

 

 

3

-allyl palladi-

MacroModel

MM2

Derived from crystal struc-

Determine the factors that

94

 

Chiral η

 

 

 

um(II) catalysts

 

 

 

ture data; available as

govern stereodifferenti-

 

 

 

 

 

 

 

 

 

supplementary material

ation in [(chiral diphosphi-

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

com-

 

 

 

 

 

 

 

 

 

 

 

 

 

ne)Pd(η -allyl)]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plexes

 

 

 

Allylation

 

3

-Allyl palladium(II) cat-

MacMimic

MM2

Obtained from the litera-

Quantify the steric interac-

95

 

η

 

 

 

alysts

 

 

 

 

ture (91)

 

 

tion between an incom-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

ing nucleophile and η -al-

 

 

 

 

 

 

 

 

 

 

 

 

 

lyl palladium complex

 

 

 

 

 

 

 

 

 

 

 

 

 

during allylation

 

Dihydroxylation

Osmium tetraoxide with

MacroModel,

Modified

NH

-type nitrogen parame-

Explain enantiofacial selec-

97

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

various other ligands

MacMimic

MM2, MM3

 

ters taken from MM2(91);

tivities and selectivity

 

 

 

 

 

 

 

 

 

osmium parameters

trends observed for the

 

 

 

 

 

 

 

 

 

taken from the literature

various olefin classes

 

 

 

 

 

 

 

 

 

(96)

 

 

 

 

 

 

Epoxidation

 

Mn(salen) complexes

MacroModel

MM3

Parameters for Mn ob-

Probe mechanism of epoxi-

99

 

 

 

 

 

MM3

 

 

tained from crystal struc-

dation by Mn(salen) com-

 

 

 

 

 

 

 

 

 

ture data (98)

 

plexes via metallaoxe-

 

 

 

 

 

 

 

 

 

 

 

 

 

tane intermediates

 

Force field devel-

Metallocenes (M Fe,

CHEM-X

CHARMM

Vibrational data

 

Develop a self-consistent

25

opment

 

 

Ru, Os, V, Cr, Co, Fe,

 

 

 

 

 

 

 

molecular mechanics

 

 

 

 

Ni)

 

 

 

 

 

 

 

 

force field, based on spec-

 

 

 

 

 

 

 

 

 

 

 

 

 

troscopic data, for linear

 

 

 

 

 

 

 

 

 

 

 

 

 

metallocenes

 

 

 

Force field devel-

Bent Ti, Zr, and Hf met-

CHARMM

Modified

Derived from vibrational

Generate a self-consistent,

27

opment

 

 

allocenes

 

CHARMM

 

data of [Cp

MCI

] com-

accurate force field for

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

(27)

 

plexes

 

 

bent metallocenes

 

248

Douglass and White

Force field development

Force field development

Force field development

Force field development

Force field development

Force field development

Force field development Force field development

Inorganic

Fe

2

and Ni

2

 

 

complexes with N-do-

nor ligands

 

 

Vanadium-oxo com-

 

plexes

 

 

 

 

Low-spin Ni(II) com-

 

plexes with tetraaza

macrocycles

 

 

Allylic nickel phosphine

complexes

 

 

Vanadium peroxides

 

(L

V(O )

; m

0–4)

n

 

2

m

 

 

 

Transition metal car-

 

bonyl clusters

 

WCl CHR (R H, CH

,

4

 

 

 

 

3

 

CH

CH )

 

 

 

 

 

2

3

 

 

 

 

Cobalt(II), nickel(II), and

copper(II) complexes

with amine and imine

ligands

 

 

 

 

CHARMM

CHARMM

Augmented with values for

 

 

pyridine and metal

MM2

MM2

X-ray data and quantum cal-

 

 

culations to determine

 

 

metal-dependent parame-

 

 

ters

MOLMEC

MM2

Extensions for aliphatic

 

 

amines and aromatic sys-

 

 

tems from crystal struc-

 

 

ture data

PCMODEL

MM2

Crystallographic data and

 

 

ab initio calculations

MM2

MM2

Metal-dependent parame-

 

 

ters derived from quan-

 

 

tum mechanical calcula-

 

 

tions and crystallography

Custom

MM2

Presented in paper

PCMODEL

METMOD1

Crystal structure data

DOMMINO

CLFSE MM

Crystal structure data

 

(106)

 

Generate parameters appro-

2

priate for modeling the

 

selectivity of the macrocy-

 

clic reagents to the size

 

of the metal atom

 

Develop force field for vana-

100

dium-oxos; compare MM

 

and SEQC methods

 

Use trial-and-error process

101

to derive force field pa-

 

rameters for the Ni(II)

 

part of the molecule that

 

gave the best fit with X-

 

ray data

 

Develop force field to pre-

102

dict diastereo-induction

 

in intramolecular Ni-cata-

 

lyzed [4 4] cycloaddi-

 

tions

 

Demonstrate utility of esti-

103

mating missing metal-de-

 

pendent molecular me-

 

chanics parameters from

 

quantum calculations

 

Develop a new force field

104

for the molecular mechan-

 

ics simulation of ligand

 

structures in transition

 

metal carbonyl clusters

 

Develop and evaluate tung-

105

sten carbene parameters

 

Extend molecular mechan-

107

ics scheme with cellular li-

 

gand field ligand stabiliza-

 

tion energy (CLFSE)

 

terms that explicitly treat

 

the electronic effects aris-

 

ing from changes in the

 

d-orbital energies

 

Catalysts Organometallic of Modeling MM

249

TABLE 1

Continued

 

 

 

 

Reaction

Catalyst

Program

Force field

Added parameters

Purpose

Force field devel-

Layered α- and γ-zirco-

opment

nium phosphates

 

HIV-1 Protese

HIV-1 Protease

 

 

HIV-1 Protease

HIV-1 Protease

 

 

Hydrocyanation

[NiCl

L ], L

2

electroni-

 

 

2

2

 

 

 

 

cally tuned Thix-

 

 

 

antphos diphosphines

Hydrodesulfurization

MoS

2

slabs on γ-Al

O

3

 

 

 

 

2

 

 

support

 

 

 

 

Hydrodesulfurization

MoS

2

slabs supported

 

on γ-alumina and β-

 

quartz

 

 

 

 

Hydroformylation

Rhodium complexes

 

 

containing BINAPHOS

Hydroformylation

[Pt(CO)XL

] complexes

 

 

 

2

 

 

 

 

 

(L diphosphine, X

 

halide)

 

 

 

2

UFF

Derived from AIQC on

Cerius

 

 

model compounds

FRODO,

UFF

Protein crystal structure

CHAIN,

 

and IR data, used to im-

AMMP (109)

 

prove parameters for pro-

 

 

teins and nucleic acids

 

 

(110)

Insight II Dis-

CVFF

Crystallography (112)

cover

 

 

 

 

SYBYL

TRIPOS

Reported in paper

2

Dreiding

Listed in paper

Cerius

2

Dreiding

MoS

 

parameters from Ref.

Cerius

2

 

 

 

 

 

 

115; other parameters

 

 

listed in paper

Insight II Dis-

Extended

Parameters based on DFT

cover

cff91

calculations

Polygraf

Dreiding

Parameters included in

 

 

paper

Molecular mechanics pa-

 

rameters derivation; com-

pare molecular mechan-

ics results to crystal data

and AIQC (CRYSTAL95

 

program)

 

 

 

 

Calculate protease/peptide

interaction energies

 

 

Calculate inhibitor binding

energies

 

 

 

 

Study effect of ligand bite

angle and backbone rigid-

ity on hydrocyanation se-

lectivity

 

 

 

 

Model nonbonded interac-

tions of MoS

with Al

O

3

2

 

2

 

Model free MoS

2

clusters

 

 

 

 

 

and nonbonded interac-

tions between MoS

 

 

 

 

2

 

 

sheets and planes of γ-

 

alumina or β-quartz for

 

hydrodesulfurization

 

 

catalysts

 

 

 

 

Use molecular mechanics

 

to include steric effects in

DFT calculations on the

 

stereoselectivity of hydro-

formylation

 

 

 

 

Evaluate importance of ste-

ric factors in determining

regioselectivity

 

 

 

Ref.

108

111

113

114

115

116

117

118

250

Douglass and White

Hydroformylation

Hydroformylation

Hydrogenation

Hydrogenation

Hydrogenation

Hydrogenation

Hydrogenation

Hydrogenation

Hydroxylation

Rhodium diphosphine

complexes

 

 

[Rh(modified xan-

 

thene)H(CO)L] and

 

[Rh(diphos-

 

 

phine)(H)(CO)

]

 

2

 

 

complexes

 

 

Rh diphosphine com-

 

plexes

 

 

[Rh(chiral bisphosphi-

 

 

 

ne)(MAC)] com-

 

plexes

 

 

Cinchona-modified Pt/

alumina catalysts

 

Rh(I) aminophosphine-

phosphinite com-

 

plexes

 

 

Ir complexes with chiral

dithioether ligands

 

that form seven-

 

membered rings

 

[Rh(S,S-CHIRAPHOS)]

 

 

enamide complexes

Osmium tetraoxide

 

MacroModel

Amber

Augmented with values for

Probe the different alde-

 

 

tertiary phosphines (19)

hyde regioselectivity of

 

 

 

 

phosphine ligands

SYBYL

TRIPOS

Crystal structure data and

Develop new bidentate di-

 

 

Ref. 121

 

phosphines by modeling

 

 

 

 

the effect of bite angle on

 

 

 

 

regioselectivity

CHEM-X

COSMIC

Crystal structure fragments

Define the source of stereo-

COSMIC

 

assembled in COSMIC

selectivity in binding of

 

 

 

 

prochiral enamide to the

 

 

 

 

chiral Rh diphosphine

 

 

 

 

fragment

QUANTA

SHAPES (24) Presented in paper

 

Probe structural features

CHARMM

 

 

 

that give rise to the en-

 

 

 

 

antioselectivity observed

 

 

 

 

in the hydrogenation of

 

 

 

 

the substrates

AMBER

MacroModel

Unknown origin of parame-

Rationalize interaction be-

 

 

ters

 

tween chiral modifier and

 

 

 

 

substrate

CAChe

MM2

Presented in paper

 

Support thermodynamically

 

 

 

 

controlled asymmetric hy-

 

 

 

 

drogenation of ketopanto-

 

 

 

 

lactone

2

UFF

UFF parameters only

Study the relative stability

Cerius

 

 

 

 

of possible isomers

CHEM-X

MMX

Crystallography and within

Analyze the addition of H

 

 

 

 

2

PCMODEL

 

MMX

 

to the major and minor di-

 

 

 

 

asteremeric [Rh(S,S)-

 

 

 

 

 

 

 

 

 

CHIRAPHOS)] fragments

MacroModel

MM2

Used values for RuO

4

Explained selectivity trends

 

 

 

 

 

 

 

 

for various olefins

120

122

29

32

38

40

42

30

97

Catalysts Organometallic of Modeling MM

251

TABLE 1

Continued

 

 

 

 

 

Reaction

Catalyst

Program

Force field

Added parameters

Purpose

Ref.

Hydroxylation

Insertion

Insertion

Insertion

Insertion

Ligand design

Ligand design

Ligand design

Iron and manganese

 

 

 

TOPO, MMID

MM2

Referenced in paper

prophyrins

 

 

 

 

 

 

 

 

 

[(SiH

-C H

-NH)MCH

 

 

 

POLYGRAF

MM2

Unknowns approximated

]

 

 

 

2

5

4

 

 

 

 

3

 

 

 

 

 

 

(M Ti, Zr, Hf),

 

 

 

 

 

 

 

[(SiH -C H

-NH)TiCH ]

 

 

 

 

 

 

2

5

4

 

 

 

 

 

3

 

 

 

 

Cp

*U(H){[(1s)-endo]-

 

BIOGRAF

Dreiding and

Crystallographic data

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

-

 

MMP2

 

bornoxide} (Cp* η

 

 

C

Me )

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

5

 

 

 

 

 

 

 

 

 

 

 

 

Rh

(5S-MEPY)

,

Rh

(5R-

 

CAChe

Augmented

Crystallographic data

2

 

 

 

 

 

4

2

 

 

 

 

 

 

 

MEPY)

,

Rh

(4R-

 

 

 

 

 

MM2

 

 

 

 

4

 

 

2

 

 

 

 

 

 

 

 

 

BNOX)

,

Rh

(4S-

 

 

 

 

 

 

 

 

 

 

4

 

 

2

 

 

 

 

 

 

 

 

 

BNOX)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

Dirhodium carboxylates

CAChe

Augmented

Estimated for atom types

and carboxamides

 

 

 

 

MM2

not in MM2

Cyclophosphazenic poly-

MM2I (128)

MM2

Derived from crystallo-

podands and glymes

 

 

 

graphic data (129)

and their complexes

 

 

 

 

with ion pairs

 

, M

 

 

 

M

I

 

 

 

 

Li, Na, K, and Rb

 

 

 

 

Ni(II) with tetraaza mac-

ALCHEMY and

Modified TRI-

Derived from crystallo-

rocyclic ligands

 

 

 

 

BOYD (131)

POS (132)

graphic data and re-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ported in paper

Chiral crown ethers de-

Hyperchem

AMBER

From Hyperchem, with addi-

rived from camphor

 

 

 

tions listed in the paper

Model catalyzed saturated

123

alkane hydroxylation

 

Probe mechanism of chain

124

propogation using con-

 

strained catalyst geome-

 

tries

 

Search for most sterically

125

favorable approach of ole-

 

fin toward actinide center

 

Determine preferred confor-

126

mation of intermediate

 

metal carbenes, and mea-

 

sure effect of chiral li-

 

gands

 

Model pseudotransition-

127

state structures to iden-

 

tify steric factors that con-

 

trol regioselectivity

 

Investigate the catalytic ac-

130

tivity of these ligands in

 

solid–liquid phase trans-

 

fer reactions

 

Predict the steric strain in

133

the higher-field-strength

 

complexes that could not

 

be synthesized

 

Study mechanism of ionic

134

reactions catalyzed by chi-

 

ral crown ethers; model

 

stereoselectivity of cata-

 

lysts

 

252

Douglass and White

Metathesis

Metathesis

Organic

Organic

Organic

Organic

Polymerization

Polymerization

Polymerization

Supported tungsten

phenoxides

Tungsta-carbenes

TADDOL-TiCl

 

 

2

Co

(CO)

8

2

 

Redox active cavitand li-

gands with ferrocenyl

redox centers

Bleomycin (BLM) bound

to Fe(III)

Bridged zirconocene di-

chlorides

Cu(I) carboxylates

Ansa zirconocenes with

chiral ethylene

bridges

Insight II

ESFF

Crystal structure data

Model the surface structure

135

 

 

 

to determine the pre-

 

 

 

 

ferred arrangement of

 

 

 

 

the tungsten diphenoxide

 

 

 

 

species on the hydroxyl-

 

 

 

 

ated support

 

PCMODEL

METMOD1

MMX parameters and crys-

Create an adequate model

136

 

MMX

tal structure data

to study the catalysts, the

 

 

 

 

intermediates, and prod-

 

 

 

 

ucts of this reaction type

 

Chem3D

MM2

None specified

Measure the influence that

137

 

 

 

substituents on the dioxo-

 

 

 

 

lane ring exert on stereo-

 

 

 

 

selectivity

 

PCMODEL

MMX

None specified

Model proposed cobalta-

138

 

 

 

cycle intermediates of bi-

 

 

 

 

cyclization of substrate

 

CHEMMOD

CHEMMIN

Taken from CHEMMIN

Find the minimum-energy

139

 

 

 

position of the ligand

 

 

 

 

within the cavitand

 

MM2MX

1.5MM2/MX

General metal complex val-

Make a qualitative study of

140

 

 

ues used

Fe(III)BLM bound to

 

 

 

 

HOOH

 

Discover

Modified

Unpublished data

Use molecular mechanics

141

 

cff91

 

to study equilibration be-

 

 

 

 

tween conformers of the

 

 

 

 

catalysts

 

MOPAC

PM3 and

None specified

Propose possible mecha-

142

PCMODEL

MMX

 

nism of the dimerization

 

 

 

 

of 1-alkynes

 

Not specified

Not specified

None specified

Rationalize stereoregularity

143

 

 

 

of polypropene samples

 

 

 

 

in the presence of diaste-

 

 

 

 

reomeric complexes with

 

 

 

 

different bridges

 

Catalysts Organometallic of Modeling MM

253

TABLE 1

Continued

 

 

 

 

 

 

 

 

Reaction

 

 

Catalyst

Program

Force field

Added parameters

Purpose

 

Ref.

 

 

 

 

 

 

 

 

 

Polymerization

[WCl

]/[SnMe

]

METMOD

MM2

Collected from literature or

Create a model for study-

144

 

 

6

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spectroscopic data

ing the steric effects gov-

 

 

 

 

 

 

 

 

 

erning the stereoselectiv-

 

 

 

 

 

 

 

 

 

ity of olefin metathesis in

 

 

 

 

 

 

 

 

 

the elementary steps of

 

 

 

 

 

 

 

 

 

olefin polymerization

 

Polymerization

Silylene-bridged zir-

MM2

MM2

None reported (Zr treated

Investigate the effects of al-

55

 

 

conocene

 

 

 

as a pseudoatom)

kyl substituents on the

 

 

 

 

 

 

 

 

 

Cp rings and the olefin

 

 

 

 

 

 

 

 

 

substrate

 

 

Polymerization

Zirconocenes

 

Custom code

Modified

From the literature (69)

Determine relationship be-

59

 

 

 

 

 

 

CHARMM

 

tween regiospecificity

 

 

 

 

 

 

 

(27,33)

 

and type of stereoselectiv-

 

 

 

 

 

 

 

AMBER

 

ity in propene polymeri-

 

 

 

 

 

 

 

 

 

zation

 

 

Polymerization

Cyclopentadienyl com-

Custom code

CHARMM

None specified

Present a geometrical and

60

 

 

plexes of Ti and Zr

 

MM2

 

nonbonded energy analy-

 

 

 

 

 

 

 

 

 

sis on possible catalytic

 

 

 

 

 

 

 

 

 

intermediates

 

 

Polymerization

Bis-(2-phenylindenyl) zir-

Custom code

CHARMM

From the literature (69)

Analyze the stereospecific-

61

 

 

conium chloride pre-

 

(27,33)

 

ity and enantioselectivity

 

 

 

cursor

 

 

 

 

caused by the isomeriza-

 

 

 

 

 

 

 

 

 

tion of the catalyst

 

 

Shape selectivity

Fe(II)/Fe(III) complexes

SYBYL

TAFF (145)

Added parameters to de-

Model the formation of the

146

 

 

of DIPIC, 2PP C, and

 

 

scribe Fe(II) and Fe(III)

complexes of Fe(II) and

 

 

 

 

 

6

 

 

 

 

 

 

 

 

CHOX

 

 

 

with these ligands

Fe(III) of linear NO

-donor

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

set ligands

 

 

Shape selectivity

Bis(pentamethylcyclop

CHARMM

CHARMM

Parameters obtained from

Understand why these met-

26

 

 

entadienyl) com-

 

 

the literature (27)

allocenes are bent

 

 

 

 

plexes of Ca, Sr, Ba,

 

 

 

 

 

 

 

 

Sm, Eu, and Yb

 

 

 

 

 

 

254

Douglass and White

Shape selectivity

Surface study

Surface study

Surface study

Zeolites

Zeolites

Zeolites

Zeolites

Zeolites

Zeolites

Vanadium oxo com-

 

plexes

 

 

 

Rh/SiO

2

and Rh[Sn(n-

 

 

 

 

 

 

 

 

 

 

 

 

C

H )

 

]

y

/SiO

 

 

 

4

 

 

9

 

x

2

 

Pt/SiO

2

 

and Sn(n-C

H )

 

 

 

 

 

 

 

 

 

4

9

MoS

2

slab

 

Zeolite L

 

 

 

Silicalite and zeolite

 

NaY

 

 

 

 

 

 

Zeolite NaY

 

H

x

 

ZSM-5/benzene

 

complexes (x 4)

Mordenite, zeolite L

FER, ZSM-48, EUO, MFI

 

zeolites (small-, me-

 

dium-, and large-pore

 

zeolites)

 

Custom code

MM2

Metal-dependent parame-

 

 

ters were derived as out-

 

 

lined in paper

SYBYL

TRIPOS

Listed in paper, obtained

 

 

from Refs. 147–149

SYBYL

TRIPOS

Listed in paper and Ref.

 

 

149

PC-CHEMMOD

Dreiding in

Used values from literature

 

CHEMMIN

(152)

Chemgraph

Only van der

Parameters taken from the

 

Waals

literature (154)

 

terms

 

ZEOLITHEN-

Only van der

Reported in papers

ERGIE

Waals

 

 

terms

 

ZEOLITHEN-

Reported in

Crystal structure data

ERGIE

paper

 

Custom

Only van der

Listed in paper and modi-

method

Waals

fied from literature for

(160,161)

terms

sorbate (162,163)

Insight II Dis-

CVFF

Obtained from the litera-

cover

 

ture (78)

CATALYSIS

CVFF and

Within CATALYSIS and

 

cff91

computed structures com-

 

 

pared with crystal struc-

 

 

ture data

Compare quantum and mo-

100

lecular mechanics meth-

 

ods in analysis of the ste-

 

ric and electronic energy

 

differences between iso-

 

mers

 

 

Calculate steric hindrance

150

for Sn complexes grafted

 

on the metallic surface

 

Calculate steric hindrance

151

for Sn complexes grafted

 

on the metallic surface

 

Model the active site of

153

MoS

2

and binding of thio-

 

phene

 

Calculate minimum-energy

155

position of pyridine in ze-

 

olite L

 

Use molecular mechanics

156–159

to develop a molecular

 

dynamics approach to

 

studying small molecules

 

in zeolites

 

Determine adsorption sites

74

and locations of aromatic

 

molecules in zeolite NaY

 

under catalytic conditions

 

Predict preferred proton lo-

76

cations in zeolite

 

Obtain the minimum-en-

77

ergy profiles for the selec-

 

tive isopropylation of

 

naphthalene

 

Determine the minimum-en-

80

ergy pathway for the dif-

 

fusion of the substrates

 

through the zeolites

 

Catalysts Organometallic of Modeling MM

255

TABLE 1

Continued

 

 

 

 

 

 

Reaction

 

Catalyst

Program

Force field

Added parameters

Purpose

Ref.

 

 

 

 

 

 

 

 

 

Zeolites

 

Y, mordenite, ZSM-5

2

Burchart (zeo-

Cerius

2

Estimate adsorption

81

 

Cerius

 

 

 

and beta zeolites

 

lite), Dreid-

 

 

strength of all the carbe-

 

 

 

 

 

ing (sor-

 

 

nium ion isomers derived

 

 

 

 

 

bate)

 

 

from the olefins on the ze-

 

 

 

 

 

 

 

 

olites

 

Zeolites

 

Zeolite-Y with lanthan-

QUANTA/

Reported in

From crystal structure data

Study C–S bond cleavage

82

 

 

ide and actinide ions

CHARMM

paper

 

 

in N-substituted car-

 

 

 

 

 

 

 

 

bonimido dithiolates

 

Zeolites

 

HZSM-5

ZEOLITHEN-

 

Parameters taken from the

Determine the location of

83

 

 

 

ERGIE

 

literature (164)

naphthalene and 2-meth-

 

 

 

 

 

 

 

 

ylnaphthalene in the

 

 

 

 

 

 

 

 

HZSM-5

 

Zeolites

 

Faujasite-type zeolites

Dizzy (79)

Reported in

Vibrational spectra

Develop a force field to ex-

79

 

 

 

 

paper

 

 

plicitly distinguish be-

 

 

 

 

 

 

 

 

tween Al and Si in FAU-

 

 

 

 

 

 

 

 

type zeolites

 

Ziegler–Natta

Ansa zirconocenes and

None speci-

Modified

None specified

Rationalize dependence of

64

 

 

hafnocenes

fied

CHARMM

 

 

the stereoselectivity of

 

 

 

 

 

 

 

 

the catalyst on the π-li-

 

 

 

 

 

 

 

 

gand alkyl substitutions

 

Ziegler–Natta

Meso- and rac-bis(2-pen-

MCM

UFF

No parameters needed

Model the source of barrier

165

 

 

ylindenyl)zirconium

 

 

 

 

between meso and rac

 

 

 

dichloride

 

 

 

 

forms of the catalyst; de-

 

 

 

 

 

 

 

 

termine the role of π-

 

 

 

 

 

 

 

 

stacking on polymer for-

 

 

 

 

 

 

 

 

mation

 

256

Douglass and White

Ziegler–Natta

Ziegler–Natta

Ziegler–Natta

Ziegler–Natta

Ziegler–Natta

 

 

 

 

 

 

 

5

-

rac-(1,2-Ethylenebis(η

indenyl))Zr(IV) cata-

 

lysts

 

 

 

 

 

 

 

Ansa metallocenes

 

Ansa zirconocenes

 

Zirconocene-based and

titanocene-based cata-

lysts

 

 

 

 

 

 

 

CpZrC

H

 

and

 

5

 

 

2

 

 

 

 

 

 

Cp

ZrC H

9

 

with the

 

 

 

2

 

 

4

 

 

 

 

various bridging li-

 

gands

 

 

 

 

 

 

BIOGRAF

Dreiding

Ab initio calculations for ac-

 

 

tivated complex; molecu-

 

 

lar mechanics parameters

 

 

reported in paper

2

UFF and VAL-

No additional parameters

Cerius

 

BOND

necesary

BIOGRAF, PO-

Dreiding

Dreiding extended to in-

LYGRAF

 

clude tetrahedral Zr and

 

 

pseudoatoms for Cp, al-

 

 

lyl, and olefin centroids;

 

 

parameters reported in

 

 

paper

None given

Modified

None specified

 

CHARMM

 

CHARMM

Unspecified

DFT calculations; additional

 

 

parameters from the liter-

 

 

ature (33,65–67)

Determine effect of catalyst

166

substituents on the tac-

 

ticity of polypropylene

 

Develop a force field capa-

167

ble of calculating transi-

 

tion states and kinetic iso-

 

tope effects for the

 

systems of interest

 

Evaluate ability of the force

54

field to predict tacticity of

 

known and unknown zir-

 

conocene catalysts

 

Rationalize the probability

57

distributions of stereo-

 

chemical configurations

 

of the regioirregular units

 

in isotactic polymer units

 

Evaluate steric effects due

62

to bulky substituents

 

Catalysts Organometallic of Modeling MM

257

Соседние файлы в предмете Химия