
Reactive Intermediate Chemistry
.pdf788ARYNES
D.R. Tate, J. A. Clark, P. R. Moody, A. S. Van Buren, and J. A. Krauser, J. Phys. Chem.
1996, 100, 3430; (v) C. J. Cramer, J. J. Nash, and R. R. Squires, Chem. Phys. Lett. 1997, 277, 311; (w) W. Langenaeker, F. De Proft, and P. Geerlings, J. Phys. Chem. A 1998, 102, 5944. For more recent computational studies, see: (x) H. F. Bettinger, P. v. R. Schleyer, and H. F. Schaefer, III, J. Am. Chem. Soc. 1999, 121, 2829; (y) B. A. Hess, Jr., and L. J. Schaad, Mol. Phys. 2000, 98, 1107; (z) F. De Proft, P. v. R. Schleyer, J. H. van Lenthe,
F.Stahl, and P. Geerlings, Chem. Eur. J. 2002, 8, 3402; and references cited therein.
27.Additional spectroscopic data were available, which have, however, less frequently been used for comparison with theoretical calculations. These comprise the UV spectrum, Ref. 20, and the microwave spectrum of 4: (a) R. D. Brown, P. D. Godfrey, and M. J. Rodler, J. Am. Chem. Soc. 1986, 108, 1296. The dipolar 13C NMR spectrum of 1,2- [13C]2-4 in an argon matrix was measured and analyzed in order to determine the C C distance., cf. Ref. 24. A detailed comparison of measured and calculated chemical shifts is given in (b) H. Jiao, P. v. R. Schleyer, B. R. Beno, K. N. Houk, and R. Warmuth, Angew. Chem. 1997, 109, 2929; Angew. Chem. Int. Ed. Engl. 1997, 36, 2761.
28.(a) J. A. Miller, R. J. Kee, and C. K. Westbrook, Annu. Rev. Phys. Chem. 1990, 41, 345;
(b) I. Glassman, Combustion, Academic Press, San Diego, 1996.
29.(a) R. F. C. Brown, D. V. Gardner, J. F. W. McOmie, and R. K. Solly, Aust. J. Chem. 1967, 20, 139; (b) M. Barry, R. F. C. Brown, F. W. Eastwood, D. A. Gunawardana, and C. Vogel, Aust. J. Chem. 1984, 37, 1643; (c) R. F. C. Brown, K. J. Coulston, F. W. Eastwood, and C. Vogel, Aust. J. Chem. 1988, 41, 1687; (d) R. F. C. Brown, Eur. J. Org. Chem. 1999, 3211.
30.R. F. C. Brown and F. W. Eastwood, Synlett, 1993, 9.
31.R. F. C. Brown, K. J. Coulston, F. W. Eastwood, and S. Saminathan, Aust. J. Chem. 1987, 40, 107.
32.C. Wentrup, R. Blanch, H. Briel, and G. J. Gross, J. Am. Chem. Soc. 1988, 110, 1874.
33.E. W.-G. Diau, J. Casanova, J. D. Roberts, and A. H. Zewail, Proc Natl. Acad. Sci. 2000, 97, 1376.
34.R. S. Berry, J. Clardy, and M. E. Schafer, Tetrahedron Lett. 1965, 415, 1003, 1011.
35.H. E. Bertorello, R. A. Rossi, and R. Hoyos de Rossi, J. Org. Chem. 1970, 35, 3332.
36.W. E. Billups, J. D. Buynak, and D. Butler, J. Org. Chem. 1979, 44, 4218.
37.S. V. Luis, F. Gavina, V. S. Safont, M. C. Torres, and M. I. Burguete, Tetrahedron 1989, 45, 6281.
38.(a) W. N. Washburn, J. Am. Chem. Soc. 1975, 97, 1615; (b) W. N. Washburn, and
R.Zahler, J. Am. Chem. Soc. 1976, 98, 7827, 7828.
39.G. Bucher, W. Sander, E. Kraka, and D. Cremer, Angew. Chem. Int. Ed. Engl. 1992, 31, 1230; (b) W. Sander, G. Bucher, H. Wandel, E. Kraka, D. Cremer, and W. S. Sheldrick,
J.Am. Chem. Soc. 1997, 119, 10660.
40.E. Kraka, D. Cremer, G. Bucher, H. Wandel, and W. Sander, Chem. Phys. Lett. 1997, 268, 313.
41.R. Marquardt, W. Sander, and E. Kraka, Angew. Chem. Int. Ed. Engl. 1996, 35, 746.
42.W. Sander, M. Exner, M. Winkler, A. Balster, A. Hjerpe, E. Kraka, and D. Cremer, J. Am. Chem. Soc. 2002, 124, 13072.
43.The IR spectrum of 13 has been reinterpreted in favor of a bicyclic structure 18 based on B3LYP calculations: (a) B. A. Hess, Jr., Eur. J. Org. Chem. 2001, 2185; (b) B. A. Hess,
790ARYNES
62.(a) I. D. Campbell and G. Eglington, J. Chem. Soc. C 1968, 2120; (b) N. J. Turro,
A.Evenzahav, and K. C. Nicolaou, Tetrahedron Lett. 1994, 35, 8089; (c) D. Ramkumar,
M.Kalpana, B. Varghese, S. Sankararaman, M. N. Jagadeesh, and J. Chandrasekhar,
J.Org. Chem. 1996, 61, 2247; (d) T. Kaneko, M. Takahashi, and M. Hirama, Angew. Chem. Int. Ed. Engl. 1999, 38, 1267; (e) N. Choy, B. Blanko, J. Wen, A. Krishan, and
K.C. Russell, Org. Lett. 2000, 2, 3761.
63.(a) A. Evenzahav and N. J. Turro, J. Am. Chem. Soc. 1998, 120, 1835; (b) A. E. Clark,
E.R. Davidson, and J. M. Zaleski, J. Am. Chem. Soc. 2001, 123, 2650.
64.L. Eisenhuth, H. Siegel, and H. Hopf, Chem. Ber. 1981, 114, 3772.
65.O. L. Chapman, C. C. Chang, and J. Kolc, J. Am. Chem. Soc. 1976, 98, 5703.
66.(a) M. J. Schottelius and P. Chen, J. Am. Chem. Soc. 1996, 118, 4896; (b) C. F. Logan and
P.Chen, J. Am. Chem. Soc. 1996, 118, 2113.
67.H. H. Wenk and W. Sander, Eur. J. Org. Chem. 1999, 57.
68.C. Koetting, W. Sander, S. Kammermeier, and R. Herges, Eur. J. Org. Chem. 1998, 799.
69.R. Marquardt, A. Balster, W. Sander, E. Kraka, D. Cremer, and J. G. Radziszewski,
Angew. Chem. Int. Ed. Engl. 1998, 37, 955.
70.T. D. Crawford, E. Kraka, J. F. Stanton, and D. Cremer, J. Chem. Phys. 2001, 114, 10638.
71.For a general treatment of orbital instabilities, see: T. D. Crawford, J. F. Stanton, W. D. Allen, H. F. Schaefer, III, J. Chem. Phys. 1997, 107, 10626.
72.R. Marquardt, W. Sander, T. Laue, and H. Hopf, Liebigs Ann. 1995, 1643.
73.R. Hoffmann, A. Imamura, and W. J. Hehre, J. Am. Chem. Soc. 1968, 90, 1499.
74.For a general treatment of through-bond interactions, see: (a) R. Hoffmann, Acc. Chem. Res. 1971, 4, 1; (b) R. Gleiter, Angew. Chem. Int. Ed. Engl. 1974, 13, 696; (c) M. N. Paddon-Row, Acc. Chem. Res. 1982, 15, 245; (d) K. Jordan, Theor. Chem. Acc. 2000, 103, 286.
75.The reactivity of endiynes towards cyclization is, to some degree, controlled by the distance of the terminal acetylenic carbons, cf. (a) P. Magnus, R. T. Kewis, and J. C. Huffman, J. Am. Chem. Soc. 1988, 110, 1626; (b) P. A. Carter and P. Magnus, J. Am. Chem. Soc. 1988, 110, 6921; (c) J. P. Snyder, J. Am. Chem. Soc. 1989, 111, 7630; (d) J. P. Snyder, J. Am. Chem. Soc. 1990, 112, 5367; (e) P. Magnus, S. Fortt, T. Pitterna, and J. P. Snyder, J. Am. Chem. Soc. 1990, 112, 4986; (f) M. F. Semmelhack, T. Neu, and
F.Foubelo, Tetrahedron Lett. 1992, 33, 3277; (g) K. C. Nicolaou, W.-D. Dai, Y. P. Hong, S.-C. Tsay, K. K. Baldrige, and J. S. Siegel, J. Am. Chem. Soc. 1993, 115, 7944; (h) M. F.
Semmelhack, T. Neu, and F. Foubelo, J. Org. Chem. 1994, 59, 5038; (i) P. R. Schreiner, Chem. Commun. 1998, 483; (j) P. R. Schreiner, J. Am. Chem. Soc. 1998, 120, 4184;
(k) P. J. Benites, D. S. Rawat, and J. M. Zaleski, J. Am. Chem. Soc. 2000, 122, 7208; Ref. 7a; and literature cited therein.This distance can be adjusted by metal complexation, see, e.g., (l) B. P. Warner, S. P. Millar, R. D. Broene, and S. L. Buchwald, Science 1995, 269, 814; (m) B. Ko¨nig, W. Pitsch, and I. Thondorf, J. Org. Chem. 1996, 61, 5258; (n) A. Basak and J. C. Shain, Tetrahedron Lett. 1998, 39, 3029; (o) E. W. Schmitt, J. C. Huffman, and J. M. Zaleski, Chem. Commun. 2001, 167; (p) D. S. Rawat, P. J. Benites, C. D. Incarvito, A. L. Rheingold, and J. M. Zaleski, Inorg. Chem. 2001, 40, 1846; and literature cited therein. Benzannellation and substituent effects on the rate of the Bergman cyclization are discussed in: (q) C.-S. Kim and K. C. Russell, J. Org. Chem. 1998, 63, 8229;
(r) T. Kaneko, M. Takahashi, and M. Hirama, Tetrahedron Lett. 1999, 40, 2015; (s) S. Koseki, Y. Fujimura, and M. Hirama, J. Phys. Chem. A 1999, 103, 7672; (t) N. Choy,
REFERENCES 791
B. Blanko, J. Wen, A. Krishan, and K. C. Russell, Org. Lett. 2000, 2, 3761; (u) G. B. Jones and G. W. Plourde, II, Org. Lett. 2000, 2, 1757; (v) A. Basak, J. C. Shain, U. K. Khamrai, K. R. Rudra, and A. Basak, J. Chem. Soc. Perkin Trans. 1 2000, 1955; (w) B. Ko¨nig, W. Pitsch, M. Klein, R. Vasold, M. Prall, and P. R. Schreiner, J. Org. Chem. 2001, 66, 1742;
(x)M. Prall, A. Wittkopp, A. F. Fokin, and P. R. Schreiner, J. Comp. Chem. 2001, 22, 1605; Ref. 61e; and literature cited therein.
76.F. S. Amegayibor, J. J. Nash, A. S. Lee, J. Thoen, C. J. Petzold, and H. I. Kentta¨maa, J. Am. Chem. Soc. 2002, 124, 12066.
77.For example: (a) F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, 4th. ed., part A, Plenum Press, New York, 2000; (b) J. March, Advanced Organic Chemistry, 4th. ed., John Wiley & Sons, Inc., New York, 1992; (c) J. Miller, Aromatic Nucleophilic Substitution, in Reaction Mechanisms in Organic Chemistry, C. Eaborn and N. B. Chapman, Eds., Elsevier, Amsterdam, The Netherlands, 1968.
78.For example: (a) E. R. Biehl, E. Nieh, and K. C. Hsu, J. Org. Chem. 1969, 34, 3595; (b) M. Tielemans, V. Areschka, J. Colomer, R. Promel, W. Langenaeker, and P. Geerlings,
Tetrahedron 1992, 48, 10575; (c) R. W. Hoffmann, Dehydrobenzene and Cycloalkynes, Academic Press, New York, 1967; and literature cited therein.
79.(a) W. T. G. Johnson and C. J. Cramer, J. Phys. Org. Chem. 2001, 14, 597; (b) W. T. G. Johnson and C. J. Cramer, J. Am. Chem. Soc. 2001, 123, 923.
80.H. H. Wenk and W. Sander, Chem. Eur. J. 2001, 7, 1837.
81.R. J. Radziszewski, J. Waluk, P. Kaszynski, J. Spanget-Larsen, J. Phys. Chem. A 2002, 106, 6730.
82.(a) D. D. Callander, P. L. Coe, and J. C. Tatlow, Chem. Commun. 1966, 143; (b) D. D. Callander, P. L. Coe, and J. C. Tatlow, Tetrahedron 1969, 25, 25; (c) H. Heaney, Fortschr. Chem. Forsch. 1970, 16, 35.
83.M. Winkler and W. Sander, unpublished results.
84.W. Sander and M. Exner, J. Chem. Soc. Perkin Trans. 2 1999, 2285.
85.H. H. Wenk and W. Sander, Eur. J. Org. Chem. 2002, 3927.
86.H. H. Wenk, A. Balster, W. Sander, D. A. Hrovat, and W. T. Borden, Angew. Chem. Int. Ed. Engl. 2001, 40, 2295.
87.W. T. Borden, Chem. Commun. 1998, 1919.
88.R. R. Squires and C. J. Cramer, J. Phys. Chem. A 1998, 102, 9072.
89.G. P. Ford and E. R. Biel, Tetrahedron Lett. 1995, 36, 3663.
90.(a) H.-F. Gru¨tzmacher and J. Lohmann, Liebigs Ann. Chem. 1970, 733, 88; (b) H.-F. Gru¨tzmacher and J. Lohmann, Liebigs Ann. Chem. 1975, 2023.
91.J. Lohmann, J. Chem. Soc. Perkin Trans. 1 1972, 68, 814.
92.H. A. Weimer, B. J. McFarland, S. Li, W. Weltner, Jr., J. Phys. Chem. 1995, 99, 1824.
93.(a) T. Sato, M. Moriyama, H. Niino, and A. Yabe, Chem. Commun. 1999, 1089;
(b)T. Sato, H. Niino, and A. Yabe, J. Phys. Chem. A 2001, 105, 7790.
94.W. E. Billups, J. D. Buynak, and D. Butler, J. Org. Chem. 1979, 44, 4218.
95.H. H. Wenk and W. Sander, unpublished results.
96.W. R. Roth, H. Hopf, T. Wasser, H. Zimmermann, and Ch. Werner, Liebigs Ann. 1996, 1691.
792ARYNES
97.J. W. Grissom, T. L. Calking, H. A. McMillen, and Y. Jiang, J. Org. Chem. 1994, 59, 5833.
98.(a) A. G. Myers and N. S. Finney, J. Am. Chem. Soc. 1992, 114, 10986; (b) A. G. Myers and P. S. Dragovich, J. Am. Chem. Soc. 1993, 115, 7021.
99.K. N. Bharucha, R. M. Marsh, R. E. Minto, and R. G. Bergman, J. Am. Chem. Soc. 1992, 114, 3120.
100.S. Sternhell, Quart. Rev. Chem. Soc. 1969, 23, 236.
101.F. W. King, Chem. Rev. 1976, 76, 157.
102.For reviews on neocarcinostatin cytostatics, see, for example: (a) H. Maeda, K. Edo, and N. Ishida, Eds., Neocarzinostatin: The Past, the Present and Future of an Anticancer Drug, Springer, Tokyo, 1997; (b) A. G. Myers and C. A. Parrish, Bioconjugate Chem. 1996, 7, 322; see also Ref. 7.
103.(a) A. G. Myers, E. Y. Kuo, and N. S. Finney, J. Am. Chem. Soc. 1989, 111, 8057, 9130;
(b) A. G. Myers, P. S. Dragovich, and E. Y. Kuo, J. Am. Chem. Soc. 1992, 114, 9369;
(c) R. Nagata, H. Yamanaka, E. Okazaki, and I. Saito, Tetrahedron Lett. 1989, 30, 4995;
(d) R. Nagata, Y. Hidenori, E. Murahashi, and I. Saito, Tetrahedron Lett. 1990, 31, 2907.
104.(a) M. Schmittel, M. Strittmatter, and S. Kiau, Tetrahedron Lett. 1995, 36, 4975;
(b) M. Schmittel, S. Kiau, T. Siebert, and M. Strittmatter, Tetrahedron Lett. 1996, 37, 999, 7691; (c) M. Schmittel, M. Strittmatter, and S. Kiau, Angew. Chem. Int. Ed. Engl. 1996, 35, 1843; (d) M. Schmittel, M. Keller, S. Kiau, and M. Strittmatter, Chem. Eur. J. 1997, 3, 807; (e) T. Gillmann, T. Hu¨lsen, W. Massa, and S. Wocadlo, Synlett 1995, 1257; (f) J. G. Garcia, B. Ramos, L. M. Pratt, and A. Rodriguez, Tetrahedron Lett. 1995, 36, 7391.
105.(a) B. Engels and M. Hanrath, J. Am. Chem. Soc. 1998, 120, 6356; (b) P. R. Schreiner and M. Prall, J. Am. Chem. Soc. 1999, 121, 8615; (c) C. J. Cramer, B. L. Kormos, M. Seierstad, E. C. Sherer, and P. Winget, Org. Lett. 2001, 3, 1881; (d) S. P. de Visser, M. Filatov, and S. Shaik, Phys. Chem. Chem. Phys. 2001, 3, 1242; (e) P. W. Musch and B. Engels, J. Am. Chem. Soc. 2001, 123, 5557.
106.(a) C. J. Cramer and R. R. Squires, Org. Lett. 1999, 1, 215; (b) P. W. Musch and B. Engels,
Angew. Chem. Int. Ed. Engl. 2001, 40, 3833.
107.(a) P. G. Wenthold, S. G. Wierschke, J. J. Nash, and R. R. Squires, J. Am. Chem. Soc. 1993, 115, 12611; (b) P. G. Wenthold, S. G. Wierschke, J. J. Nash, and R. R. Squires, J. Am. Chem. Soc. 1994, 116, 7378.
108.C. F. Logan, J. C. Ma, and P. Chen, J. Am. Chem. Soc. 1994, 116, 2137.
109.For quantum chemical studies on 71 and related open-shell singlet biradicals, see:
(a) J. Cabrero, N. Ben-Amor, and R. Caballol, J. Phys. Chem. A 1999, 103, 6220;
(b) J. Gra¨fenstein and D. Cremer, Phys. Chem. Chem. Phys. 2000, 2, 2091; cf. also Ref. 105.
110.W. Sander, H. Wandel, G. Bucher, J. Gra¨fenstein, E. Kraka, and D. Cremer, J. Am. Chem. Soc. 1998, 120, 8480.
111.C. J. Cramer and J. Thompson, J. Phys. Chem. A 2001, 105, 2091.
112.A. Z. Bradley and R. P. Johnson, J. Am. Chem. Soc. 1997, 119, 9917.
113.Reviews on heteroarynes, see, e.g., (a) T. Kauffmann, Angew. Chem. Int. Ed. Engl. 1965, 4, 543; (b) H. J. den Hertog and H. C. van der Plas, Adv. Heterocycl. Chem. 1965, 4, 121; (c) T. Kaufmann and R. Wirthwein, Angew. Chem. Int. Ed. Engl. 1971, 10, 20;
794ARYNES
136.M. Moriyama, T. Ohana, and A. Yabe, J. Am. Chem. Soc. 1997, 119, 10229.
137.T. Sato, S. Arulmozhiraja, H. Niino, S. Sasaki, T. Matsuura, and A. Yabe, J. Am. Chem. Soc. 2002, 124, 4512; and literature cited therein.
138.(a) M. Moriyama, T. Ohana, and A. Yabe, Chem. Lett. 1995, 557; (b) M. Moriyama,
T.Sato, T. Uchimaru, and A. Yabe, Phys. Chem. Chem. Phys. 1999, 1, 2267.
139.T. Sato, H. Niino, and A. Yabe, J. Photochem. Photobiol. A 2001, 145, 3.
140.(a) W. Weltner, Jr., and R. J. van Zee, Chem. Rev. 1989, 89, 1713; (b) J. M. L. Martin, J. P. Franccois, and R. J. Gijbels, Mol. Struct. 1993, 294, 21.
141.(a) K. R. Thompson, R. L. DeKock, and W. Weltner, Jr., J. Am. Chem. Soc. 1971, 93, 4688; (b) M. Vala, T. M. Chandrasekhar, J. Szcepanski, and R. Pellow, High Temp. Sci. 1990, 27, 19; (c) D. W. Arnold, S. E. Bradforth, T. N. Kitsopoulos, and D. N. Neumark,
J.Chem. Phys. 1991, 95, 8753; (d) C. C. Arnold, Y. Zhao, T. N. Kitsopoulos, and D. N. Neumark, J. Chem. Phys. 1992, 97, 6121; (e) R. H. Kranze and W. R. M. Graham,
J.Chem. Phys. 1993, 98, 71; (f) H. J. Hwang, A. van Orden, K. Tanaka, E. W. Kuo, J. R. Heath, and R. J. Saykally, Mol. Phys. 1993, 79, 769.
142.Relative stabilities of C6 isomers have been calculated at different levels of theory:
(a)K. Raghavachari, R. A. Whiteside, and J. A. Pople, J. Chem. Phys. 1986, 85, 6623;
(b)K. Raghavachari and J. S. Binkley, J. Chem. Phys. 1987, 87, 2191; (c) J. Hutter and
H.P. Lu¨thi, J. Chem. Phys. 1994, 101, 2213; (d) J. Hutter, H. P. Lu¨thi, and F. Diederich,
J.Am. Chem. Soc. 1994, 116, 750. The historical developement of calculations on C6 is outlined in (e) J. M. L. Martin and P. R. Taylor, J. Phys. Chem. 1996, 100, 6047.
Concerning the aromaticity of 133 and 134, see Ref. 123.
143.S. L. Wang, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 1997, 107, 6032.
144.F. Grein, J. Franz, M. Hanrath, and S. D. Peyerimhoff, Chem. Phys. 2001, 263, 55.

PART 2
METHODS AND TEMPORAL REGIMES

798 |
MATRIX ISOLATION |
|
Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
840 |
|
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
840 |
|
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
840 |
1. WHAT IS MATRIX ISOLATION?
If one peruses the literature on reactive intermediates, or discusses the subject with colleagues interested in that field, one soon finds that the term ‘‘matrix isolation’’ means different things to different people, so some semantic clarification appears to be in order at the outset.
The term ‘‘matrix isolation’’ was coined by George Pimentel who pioneered this field1,2 together with George Porter.3 Pimentel intended this term to refer to a method whereby a substrate is mixed with a large exess of an (unsually unreactive) host gas and is condensed on a surface that is sufficiently cold to assure rapid solidification of the material. In this way, one ends up with a sample where (ideally) each substrate molecule is immobilized in a cavity surrounded by one or more layers of inert material and is thus ‘‘isolated’’ from the other substrate molecules in a ‘‘matrix’’ of the host gas.
In the course of time, the term matrix isolation came to be applied in a more general sense, encompassing a range of techniques where guest molecules are trapped in rigid host materials and are thereby prevented from undergoing diffusion. Such host materials may be, for example, crystals, zeolites or clays, polymers, boric acid glasses, or cryptands. However, most relevant in the present context are studies of reactive intermediates in frozen solutions that are often referred to under the heading of ‘‘matrix isolation,’’ but should perhaps more appropriately be referred to as ‘‘low-temperature spectrosopy in rigid media.’’
Such experiments have provided (and continue to provide) much valuable spectrosopic information on many types of reactive intermediates discussed in this volume. In particular, solvents that provide transparent glasses on freezing, such as the ether–pentane–alcohol (EPA) mixture introduced by G.N. Lewis,4 methyltetrahydrofuran (MTHF), or the mixture of CFCl3 and CF2Br CF2Br discovered by Sandorfy5 have proven to be very convenient media for obtaining ultraviolet– visible (UV–vis) absorption spectra of reactive intermediates that can be generated by photolysis or radiolysis at 77 K. On the other hand, many odd electron species (radicals, triplet biradicals and carbenes, radical ions) were characterized by electron spin resonance (ESR) methods in solvents that form polycrystalline matrices long before matrix isolation techniques became widely available.
However, to include this enormous body of work, and the techniques that stand behind it, into the present chapter would surpass its limits. Hence, the reader is encouraged to visit the contributions on carbocations, carbanions, radicals, radical ions, carbenes, sylilenes, nitrenes, and arynes where studies involving frozen solutions will be referred to in their topical context. Thus, this chapter will deal only