
Reactive Intermediate Chemistry
.pdf738 STRAINED HYDROCARBONS: STRUCTURES, STABILITY, AND REACTIVITY
REFERENCES
1.A. von Baeyer, Chem. Ber. 1885, 13, 2278.
2.J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall, London, 1986.
3.J. L. Jensen, Prog. Phys. Org. Chem. 1976, 12, 189.
4.U. Burkert and N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington, DC, 1982. N. L. Allinger and P. v. R. Schleyer, Eds., J. Comput. Chem. 1996, 17, pp. 488ff.
5.M. Saunders, J. Comput. Chem. 1991, 12, 645.
6.W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc., New York, 1986.
7.W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd ed., Wiley-VCH, Weinheim, 2001.
8.L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 1991, 94, 7221.
9.J. W. Ochterski, G. A. Petersson, and J. A. Montgomery, J. Chem. Phys. 1996, 104, 2578.
10.K. B. Wiberg, J. Comput. Chem. 1984, 5, 197. K. B. Wiberg, J. Org. Chem. 1985, 50, 5285. M. R. Ibrahim and P. v. R. Schleyer, J. Comput. Chem. 1985, 6, 157. L. R. Schmitz and Y. R. Chen, J. Comput. Chem. 1994, 15, 1337.
11.M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. MacDonald, and
A.N. Syverud, J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.
12.For an example of the use of heats of atomization, see J. W. Ochterski, G. A. Petersson, and K. B. Wiberg, J. Am. Chem. Soc. 1995, 117, 11299.
13.Compare K. B. Wiberg and J. W. Ochterski, J. Comput. Chem. 1997, 18, 108.
14.J. L. Franklin, Ind. Eng. Chem. 1949, 41, 1070. Compare K. M. Engler, J. D. Andose, and
P.v. R. Schleyer, J. Am. Chem. Soc. 1973, 95, 8005.
15.S. J. Blanksby and G. B. Ellison, Acct. Chem. Res. 2003, 36, 255.
16.W. F. Maier and P. v. R. Schleyer, J. Am. Chem. Soc. 1981, 103, 1891.
17.W. R. Roth, F.-G. Klarner, and H.-W. Lennartz, Chem. Ber. 1990, 113, 1818. W. Fang and D. W. Rogers, J. Org. Chem. 1992, 57, 2294.
18.C. A. Coulson and W. E. Moffitt, Philos. Mag. 1949, 40, 1.
19.C. A. Coulson, Valence, Clarendon Press, Oxford, 1952, p. 200.
20.Unpublished calculations.
21.K. B. Wiberg and F. H. Walker, J. Am. Chem. Soc. 1982, 104, 5239. K. B. Wiberg, W. P. Dailey, F. H. Walker, S. T. Waddell, L. S. Crocker, and M. Newton, J. Am. Chem. Soc. 1985, 107, 7247.
22.K. B. Wiberg and S. T. Waddell, J. Am. Chem. Soc. 1990, 112, 2194.
23.J. D. Kemp and K. S. Pitzer, J. Chem. Phys. 1936, 4, 749.
24.R. M. Moriarty, Top. Stereochem. 1974, 8, 270.
25.M. K. Leong, V. S. Mastryukov, and J. E. Boggs, J. Mol. Struct. 1998, 445, 149.
26.E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, John Wiley & Sons, Inc., New York, 1994, pp. 762ff.
27.F. A. L. Anet, Top. Curr. Chem. 1974, 45, 169.
REFERENCES 739
28.F. Vogtle, Cyclophane Chemistry: Synthesis, Structure and Reactions, John Wiley & Sons, Inc., New York, 1993.
29.D. J. Cram, R. B. Hornby, E. A. Truesdale, H. J. Heich, M. H. Dalton, J. M. Cram,
Tetrahedron, 1974, 30, 1757.
30.D. J. Cram and R. A. Reeves, J. Am. Chem. Soc. 1958, 80, 3094.
31.G. J. Abruscato and T. T. Tidwell, J. Org. Chem. 1972, 37, 4151.
32.Compare M. S. Newman, Steric Effects in Organic Chemistry, John Wiley & Sons, Inc., New York, 1963.
33.D. W. Rogers, H. von Voitherberg, and N. L. Allinger, J. Org. Chem. 1978, 43, 360.
34.M. Squillacote, A. Bergman, and J. De Felippis, Tetrahedron Lett. 1989, 30, 6805. G. M. Wallraff and J. Michl, J. Org. Chem. 1986, 51, 1794. Y. Inoue, T. Ueoka, T. Kuroda, and
T.Hakushi, J. Chem. Soc. Chem. Commun. 1981, 1031. E. J. Corey, F. A. Carey, R. A. E. Winter, J. Am. Chem. Soc. 1965, 87, 934.
35.R. G. Solomon, K. Folting, W. E. Streib, and J. K. Kochi, J. Am. Chem. Soc. 1974, 96, 1145. trans-1-Phenylcyclohexene has been observed spectroscopically (R. Bonneau, J. Joussot-Dubien, L. Salem, and A. J. Yarwood, J. Am. Chem. Soc. 1976, 98, 4329) and its strain energy has been measured via photoacoustic calorimetry (J. L. Goodman, K. S. Peters, H. Misawa, and R. A. Caldwell, J. Am. Chem. Soc. 1986, 108, 6803. It is 47 3 kcal/mol less stable than the cis isomer.)
36.A. T. Blomquist, R. E. Burge, Jr., and A. C. Sucsy, J. Am. Chem. Soc. 1952, 74, 3636.
37.M. Traetteberg, Acta. Chem. Scand. 1975, B29, 29.
38.R. C. Haddon, J. Am. Chem. Soc. 1987, 109, 1676.
39.K. B. Wiberg, Acc. Chem. Res. 1996, 29, 229.
40.A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 1988, 88, 899.
41.P. M. Warner, Chem. Rev. 1989, 89, 1067.
42.R. Keese and E. P. Krebs, Angew. Chem. Int. Ed. Engl. 1971, 10, 262. Compare C. M. Geise and C. M. Hadad, J. Am. Chem. Soc. 2000, 122, 5861 and E. Kohl, T. Stroter,
C.Siedschlag, K. Polborn, and G. Szeimies, Eur. J. Org. Chem. 1999, 3057.
43.K. Lukin and P. E. Eaton, J. Am. Chem. Soc. 1995, 117, 7652.
44.M. Hare, T. Emrick, P. E. Eaton, and S. R. Kass, J. Am. Chem. Soc. 1997, 119, 237.
45.D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc. 1988, 110, 4710. W. T. Borden, Synlett 1996, 711.
46.K. B. Wiberg, N. McMurdie, J. V. McClusky, and C. M. Hadad, J. Am. Chem. Soc. 1993, 115, 10653.
47.F. H. Walker, K. B. Wiberg, and J. Michl, J. Am. Chem. Soc. 1982, 104, 2056. K. B. Wiberg, F. H. Walker, W. E. Pratt. and J. Michl, J. Am. Chem. Soc. 1983, 105, 3683.
48.C. J. Doubleday, Am. Chem. Soc. 1993, 115, 11968.
49.K. B. Wiberg, J. J. Caringi, M. G. Matturro, J. Am. Chem. Soc. 1990, 112, 5854.
50.P. Eaton, G. Temme, III, J. Am. Chem. Soc. 1973, 95, 7508. The compound that was studied had an N,N-dimethylcarboxamide group.
51.W.-D. Stohrer and R. Hoffmann, J. Am. Chem. Soc. 1972, 94, 779 (cf. Ref. 39).
52.P. B. Shevlin and A. P. Wolf, J. Am. Chem. Soc. 1970, 92, 406.
740STRAINED HYDROCARBONS: STRUCTURES, STABILITY, AND REACTIVITY
53.G. Maier, S. Pfriem, U. Schafer, and R. Matusch, Angew. Chem. Int. Ed. Engl. 1978, 17, 520. R. Notario, O. Castano, J. L. Andres, J. Elguero, G. Maier, and C. Hermann,
Chem.—A Eur. J. 2001, 7, 342.
54.For a review of orbital symmetry, see R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press, New York, 1970.
55.R. Criegee and K. Noll, Ann. Chem. 1959, 627, 1. R. E. K. Winter, Tetrahedron Lett. 1965, 1207.
56.R. Breslow and P. Dowd, J. Am. Chem. Soc. 1963, 85, 2729.
57.M. S. Baird, H. Hussain, and W. Clegg, J. Chem. Soc. Res. Synop. 1988, 110.
58.Compare W. E. Billups, W. Luo, G-A. Lee, J. Chee, B. E. Arney, Jr., K. B. Wiberg, and D. R. Artis, J. Org. Chem. 1996, 61, 764.
59.K. B. Wiberg, M. G. Matturo, P. J. Okarma, and M. E. Jason, J. Am. Chem. Soc. 1984, 106, 2194.
60.K. B. Wiberg and G. Bonneville, Tetrahedron Lett. 1982, 5385.
61.G. Szeimies, in Strain and its Implications in Organic Chemistry, A. de Meijere and S. Blechert, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988, p. 361.
62.M. D. Levin, P. Kaszynski, and J. Michl, Chem. Rev. 2000, 100, 169.
63.K. B. Wiberg and N. McMurdie, J. Am. Chem. Soc. 1991, 113, 8995.
64.R. Baird and A. A. Aboderin, J. Am. Chem. Soc. 1964, 86, 252, 2300.
65.M. Saunders, P. Vogel, E. L. Hagen, and J. Rosenfeld, Acc. Chem. Res. 1973, 6, 53.
66.K. B. Wiberg and S. R. Kass, J. Am. Chem. Soc. 1985, 107, 988.
67.D. M. Adams, J. Chatt, G. Guy, and N. Sheppard, J. Chem. Soc. 1961, 738.
68.L. Cassar, P. E. Eaton, and J. Halpern, J. Am. Chem. Soc. 1970, 92, 3535.
69.B. Rybtchinski and D. Milstein, Angew. Chem. Int. Ed. Engl. 1999, 38, 871. K. C. Bishop, III, Chem. Rev. 1976, 76, 461.
70.J. J. Burke and P. C. Lauterbur, J. Am. Chem. Soc. 1964, 86, 1870.
71.D. J. Patel, M. E. H. Howden, and J. D. Roberts, J. Am. Chem. Soc. 1963, 85, 3218. C. D. Poulter, R. S. Boikess, J. I. Brauman, and S. Winstein, J. Am. Chem. Soc. 1972, 94, 1191.
72.H.-O. Kalinowsi, S. Berger, and S. Braun, Carbon-13 NMR Spectroscopy, John Wiley & Sons, Inc., Chichester, 1988.
73.M. B. Robin, Higher Excited States of Polyatomic Molecules, Vol. 1, Academic Press, New York, 1974, pp. 140 ff.
74.V. A. Walters, C. M. Hadad, Y. Thiel, S. D. Colson, K. B. Wiberg, P. M. Johnson, and J. B. Foresman, J. Am. Chem. Soc. 1991, 113, 4782.
75.K. B. Wiberg and R. E. Rosenberg, J. Phys. Chem. 1992, 96, 8282. K. B. Wiberg, R. E. Rosenberg, and S. T. Waddell, J. Phys. Chem. 1992, 96, 8293.



|
THE PARENT BENZYNES |
743 |
|
Cl |
NH2 |
|
|
+ KNH2 |
+ NH3 |
|
NH2 |
+ |
|
||
− KCl, NH3 |
|
|
|
|
|
|
|
4 |
50 % |
50 % |
|
= 14C |
|
|
|
Scheme 16.2. In a classic experiment, Roberts et al.4a demonstrated the involvement of 4 in the nucleophilic aromatic substitution by isotopic labeling experiments. The product distribution can only be explained by the assumption of a symmetric intermediate.
4,6d until Huisgen and Knorr5c could demonstrate in an elegant work that the same intermediate is formed from four different precursors of 4 (Scheme 16.3). At approximately the same time, Fisher and Lossing12 investigated the pyrolysis of the three isomeric diiodobenzenes using mass spectrometry (MS) and identified 4
F
|
|
|
O |
Li |
|
|
|
|
|
|
O |
F |
|
|
k1 |
|
|
|
|
MgBr |
|
|
|
N+ |
|
|
|
2 |
|
|
|
COO− |
|
4 |
|
|
|
k2 |
|
k |
/ k |
= const |
+ ... |
1 |
2 |
|
|
N
N
SO2
Scheme 16.3. In a very elegant trapping experiment, Huisgen and Knorr demonstrated that the same intermediate is formed from four different precursors.5c If 4 is trapped by a mixture of furan and cyclohexadiene, the same product ratio is observed in all four reactions.
on the basis of the measured ionization potential. Berry et al.13 studied the photoinitiated decomposition of benzenediazonium carboxylates and characterized 4 by its ultraviolet (UV) and mass spectrum in the gas phase.
The first direct infrared (IR) spectroscopic detection of o-benzyne was accomplished by Chapman et al.,14 using matrix isolation spectroscopy at very low temperatures to generate 4 starting from phthaloyl peroxide (5) and benzocyclo-

|
|
THE PARENT BENZYNES |
745 |
|
1 |
|
|
by Radziszewski et al.,21 who could definitively identify the frequency of the C C |
|||
stretching vibration at 1846 cm |
|
by thorough analysis of the IR spectra of various |
|
isotopomers of 4. |
|
|
|
As expected, the formal C C triple bond in benzyne is significantly weaker than in unstrained alkynes, the C C stretching vibrations of which usually fall in the
region 2150 cm 1. Nevertheless, o-benzyne is better described as a strained alkyne rather than a biradical, which is evident from the large singlet–triplet splitting of 37.5 0.3 kcal/mol22 as well as the alkyne-like reactivity (e.g., in Diels– Alder reactions). The enthalpy of formation of 4 was determined to be 106.6 3.0 kcal/mol by Wenthold and Squires.23 For the C C bond length a value of 124 2 pm was found experimentally,24 which comes closer to a typical C C triple bond (120.3 pm in acetylene) rather than a C C double bond (133.9 pm in ethylene).
In remarkable work, Warmuth et al.25 were able to isolate o-benzyne in a hemi- carcerand—a ‘‘molecular container’’—and to measure its NMR spectrum in solution. Whereas previous theoretical studies26 concerning the structure of 4 had to rely more or less solely on IR spectra,27 there were now additional experimental data available to judge the quality of the theoretical predictions.27b The 1H and 13C chemical shifts were most accurately reproduced using the B3LYP/6-311G** structure [r(C1C2) ¼ 124.5 pm], while calculations on the basis of CASSCF(8,8)/ DZP or CCSD(T)/6-31G** geometries led to poorer agreement with experiment.27b Furthermore, it was concluded that 4 more closely resembles a cyclic alkyne rather than a cumulene.
The important role of o-benzyne in combustion processes28 has been realized only recently. In 1997, Lin and co-workers9a suggested that loss of a hydrogen atom from the phenyl radical, which is well known to be a key intermediate in the formation of polycyclic aromatic hydrocarbons (and soot) in flames, is a dominant process in the combustion of lead-free gasoline (which contains up to 20–30% of small aromatics). A deeper understanding of combustion processes thus requires a knowledge of the high-temperature chemistry of arynes. In this context, a series of elegant studies by R.F.C. Brown et al.29–31 deserves special attention. Flash vacuum pyrolysis (FVP) of phthalic anhydride (7) (T ¼ 850 C), partly (5%) 13C labeled in the 1 and 6 position, gave a pyrolysate containing biphenylene in which one 13C label was distributed between two quaternary positions (Scheme 16.5).29a This rearrangement was explained in terms of a ring contraction of benzyne (4) leading to the exocyclic carbene (9), a reaction analogous to the acetylene–methylenecar-
bene (vinylidene) rearrangement. Different precursors (6, |
T ¼ 650–830 C; 11, |
||||
T |
¼ |
400–850 C) have been used, all of which contain a CO moiety in the leaving |
|||
|
|
29b,29c |
The interpretation of the labeling |
experiments has been |
|
group, however. |
|
questioned by Wentrup et al., who proposed that the observed scrambling may better be explained by a Wolff type ring contraction of the intermediate ketenecarbene (12, Scheme 16.5).32 Thus, the mechanism of the thermal decomposition of 7 has not been fully clarified, yet although the aryne contraction pathway has been established for some benzannellated derivatives of 4.29 A number of theoretical studies has been devoted to rearrangements on the C6H4 potential energy surface.9b,33 At

