Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

STRUCTURES OF SILYLENES AND GERMYLENES

667

material. Irradiation of 38 in solid argon results in the growing of an absorption with lmax ¼ 480 nm, whereas lmax ¼ 330 nm is found if nitrogen is used in the matrix instead.51

Rearrangement of a silene to a silylene (40) via migration of a Me3Si group has been suggested as a step in the gas-phase silylene to silylene rearrangement. Labeling experiments, however, have indicated an alternative mechanism (Scheme 14.23).81

D

~Me3Si

Si=CD2

~D Me3Si

 

D

 

Si

 

CD2SiMe3

 

 

 

 

 

 

 

 

 

Si

Me3Si CD3

40

H2

 

 

 

 

 

 

 

C

~CD3

 

 

CD3

Me2Si

 

Si

 

H

 

Si

 

CH2SiMe2CD3

 

 

 

 

 

 

 

H

 

 

 

 

 

 

Scheme 14.23

Rearrangements of disilanes to a-silylsilenes are well established and are involved in the exchange of substituents between a silylene center and the adjacent silicon.80b Pulsed flash pyrolysis of acetylenic disilane (41) gave rise to the acetylenic silene (42), which subsequently rearranged to the cyclic silylene, 1- silacyclopropenylidene (43).82 Irradiation of the cyclic silylene resulted in the isomerization to the isomeric 42, which itself could be photochemically converted into the allenic silylene (44). Both 42 and 43 also were reported to isomerize on photolysis to the unusual (45), which was characterized spectroscopically (Scheme 14.24).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

HC

 

 

 

SiH2SiMe3

 

 

HC

 

 

 

 

 

 

Si

 

H

 

 

 

 

 

43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-SiH4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

 

 

 

 

 

 

 

 

42

 

 

 

 

 

 

 

 

 

H

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500 nm

 

 

 

 

 

254 nm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

254 nm

>395 nm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

500 nm

 

 

 

 

 

 

 

 

 

 

 

 

254 nm

Si

 

 

 

HC

 

C

 

Si :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HC

 

 

 

Si

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

340 nm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

 

 

 

 

 

 

 

 

 

 

 

 

42

 

 

 

 

 

 

 

 

45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 14.24

668 SILYLENES (AND GERMYLENES, STANNYLENES, PLUMBYLENES)

Azidomethylsilane (46) eliminates nitrogen upon irradiation with the light of l ¼ 254 nm in an argon matrix to give silanimine (47) as the initially observable

product, based on the comparison of the experimental and calculated IR wavenumbers (Scheme 14.25).82,83b,c On further irradiation, a second hydrogen-shift occurs

yielding aminosilylene (48) (lmax ¼ 330 nm). Additional isomerization can be achieved after an exposure of 48 to light of longer wavelength to afford aminosilene (49) (lmax ¼ 256 nm), which regenerates 48 upon irradiation with light of shorter wavelengths.

H

254 nm

 

 

 

Si

 

NH2

 

Si

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

H2C

>310 nm

H3C

48

49

 

 

 

 

 

 

 

254 nm

 

H

H

254 nm

H

H

H3C

Si

N3

 

 

Si=N

46

 

H3C

 

 

 

47

 

 

 

 

 

Scheme 14.25

4. REACTIONS OF SILYLENES

4.1. Insertion into Single Bonds

It has been well established that silylene is a ground-state singlet species with an electron pair in a hybrid orbital and a vacant orbital of p symmetry. A Lewis base can thus coordinate to silicon through the vacant orbital to form a silylene-base adduct. All the interactions involve the initial formation of a donor–acceptor complex, followed by a high-energy transition state leading to an insertion product.84 The complex may also be represented as a zwitterionic species, that is, a silaylide, through the formation of the base-to-silicon s bond, in which the silicon center would no longer be an electrophile, but instead have nucleophile character.

Insertion reactions of silylene into a number of single bonds have been observed. The bonds include Si O, Si N, Si H, Si halogen, strained C O, Si Si, O H, N H, and C H (intramolecular only). Insertion into an X H bond can be initiated by the formation of silaylide (50) with the donation of a pair of electrons from a heteroatom X to form a bond to a divalent silicon atom (Scheme 14.26).

RR'Si : + X-H H SiRR' X

RR'Si

 

X

 

H

X=O, S, N, P, Cl

 

 

50

Scheme 14.26

REACTIONS OF SILYLENES

669

4.1.1. Insertion into O H, N H, and C Halogen Bonds. Alcohols are bases toward silylenes. Complexes (51) of alcohols with Mes2Si: and other hindered silylenes are observed spectroscopically when a 3-MP matrix containing the silylene and 5% of 2-propanol or 2-butanol is annealed.85 Melting of the matrix results in a rapid reaction of the complex to give the O H insertion product (Scheme 14.27).

Mes

 

 

 

 

 

 

 

 

(i-Pr)

 

H

Mes

H

 

 

 

i-PrOH

 

 

 

 

Mes

O

 

Si :

+

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si:

Mes

 

 

 

 

 

 

 

 

 

 

 

 

Mes

O(i-Pr)

 

 

 

 

 

 

 

 

 

51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

R = Me

89%

 

Me2Si :

+

 

ROH

 

 

 

Me2Si

R = Et

87%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR

 

 

 

 

 

 

 

 

 

 

 

 

 

R = t-Bu

85%

 

 

h ν

 

 

 

 

 

 

 

PhSi(SiMe3)3

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph(SiMe3)Si :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52

 

 

 

 

 

 

 

EtOH

 

 

 

 

 

 

 

 

 

 

 

Ph

H

h ν

 

 

EtOH Ph

OEt

 

 

 

 

 

Si:

 

 

 

 

 

 

Ph(OEt)Si:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si:

 

 

 

Me3Si

OEt

−Me3 SiH

 

 

 

Me3Si

OEt

 

 

 

 

 

 

 

 

 

 

 

 

 

53

 

 

 

 

 

 

 

 

 

 

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 14.27

The silylene-donor adducts of ethers, tertiary alcohols, tertiary amines, and sulfides were found to revert to silylenes upon warming, but the adducts of primary and secondary alcohols underwent rearrangement to the O H insertion products. Dimethylsilylene inserts into the O H bonds of water and alcohols to give bifunctional organosilanes. Interestingly, the photolysis of PhSi(SiMe3)3 (52) in the presence of excess ethanol gave the EtOH insertion product 53 as the initial product, but further photolysis gave PhSi(H)(OEt)2 (54) by elimination of Me3SiH (Scheme 14.27).86 Dimethylsilylene inserted into the N H bonds of primary and secondary amines to yield aminosilanes (55) (Eq. 4).87

 

 

H

R = R' = –(CH2)2– 85%

ð4Þ

Me2Si : + RR'NH

 

Me2Si

R = R' = Et

81%

 

 

 

NRR'

R = H, R' = t-Bu

86%

 

 

55

 

 

 

The reaction of Ph(Me3Si)Si: with CCl4 in pentane produces Ph(Me3Si)SiCl2 and CCl3 CCl3, while chloroform and alkyl chlorides give the additional C Cl insertion products. Hydrogen chloride abstraction products are also formed if a hydrogen is present vicinal to chlorine in the alkyl chlorides used as trapping

670 SILYLENES (AND GERMYLENES, STANNYLENES, PLUMBYLENES)

agents. The C Cl insertion and HCl abstraction might result from a collapse of an initial complex of the silylene with an alkyl halide (Scheme 14.28).86,88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

Cl

 

 

 

 

 

 

 

 

 

R

R=R'=CH3, Ph-Si-Cl +

Ph-Si-Cl +

HMD

 

 

 

 

R'

 

C

 

 

 

 

 

H

 

 

 

 

 

SiMe3

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si(SiMe3)3

h ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15%

24%

 

 

RR'CHCl

 

 

 

 

Cl

 

 

 

 

 

 

R=CH2Cl,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2CH2Cl

 

 

 

 

 

−HMD

Si

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

SiMe3

 

R'=H

 

HMD = Me3SiSiMe3

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph-Si-Cl +

Ph-Si-Cl +

HMD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiMe3

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.6%

12.6%

70%

Scheme 14.28

The products observed in the reactions of Me2Ge: with CCl3X (X ¼ Cl, Br), PhCH2X (X ¼ Br, I), and Ph2CHCl, by proton chemically induced dynamic nuclear polarization (1H CIDNP) are those of net insertion of Me2Ge: into the C X bond and Me2Ge2X2 (X ¼ Cl, Br) (Scheme 14.29). A two-step radical reaction takes place

PhCH2Br

Me2Ge:

 

PhCH2 GeMe2Br

 

PhCH2GeMe2Br

 

 

PhCH2 PhCH2Br

GeMe2Br2 BrMe2Ge-(Me2Ge)n-GeMe2Br

Scheme 14.29

by an abstraction–recombination mechanism, giving typical 1H CIDNP effects as evidence for reaction of the singlet-state dimethylgermylene.89 No reaction takes place with alkyl halides. The reactions of a silylene with crotyl chloride afford two types of C Cl insertion products 56 and 57, (ratio 72:28). The former product is formed by the direct silylene insertion into C Cl, while the other results from a [2,3]-sigmatropic rearrangement of the chloronium ylide (58) (Scheme 14.30). Ylide formation and rearrangement have been reviewed in the carbene reaction with heteroatoms.90 The photolysis of (Me3Si)2Ge(Mes)2 in matrices containing crotyl chloride at 77 K produced a band at 515 nm, and upon annealing, chlorocrotyldimesitylgermane, the product of direct insertion of the germylene into a carbon– chlorine bond, was formed in quantitative yield. No 2,3-sigmatropic rearranged product was found. In the thermal reaction of dimethylgermylene with crotyl

chloride, two products, direct insertion and rearranged product were obtained in the ratio 1:3.73b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REACTIONS OF SILYLENES

671

R

R"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R"

R"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M : +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRR'

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R'

 

 

Cl

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

56

Cl MRR'

 

 

 

 

 

 

 

R"

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ylide

 

 

a

 

 

 

 

 

 

 

 

 

 

 

b

57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

R'

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M = Si, R = Ph, R' = SiMe3, R" = Me

 

UV Absorption of the ylide 58

 

 

M = Ge, R = R' = Mes, R" = H, λ max = 530 nm

M = Ge, R = R' = Me, R" = Me

 

 

 

 

 

 

M = Ge, R = R' = Mes, R" = Me

 

 

 

 

 

 

M = Ge, R = R' = Mes, R" = Me, λ max = 515nm

Scheme 14.30

Reaction of bis[(trimethylsilyl)methyl]germylene (59) with an excess of trans- 1,2-dichloroethylene, and cis-1,2-dichloroethylene gave the corresponding vinyl chlorogermanes (60 and 61), in quantitative yields (Scheme 14.31).91 The attack of a germylene on the chlorine atom appears to be faster than addition of the germylene to a double bond. The stereochemistry of the starting material was retained in the products, showing that these insertion reactions proceeded stereospecifically.

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

2

 

 

 

 

 

R2

 

 

 

Cl

 

 

Cl

R2

 

 

 

 

 

 

 

59 Cl Ge

 

 

Cl

 

 

Cl

Ge

 

Cl

Cl Ge

 

 

 

 

: GeR2

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

Ge

 

Cl

 

R = CH(SiMe3)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59

 

 

 

 

R2

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl Ge

 

Ge

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61

 

 

 

 

 

Scheme 14.31

4.1.2. Insertion into C O and Si O Bonds. Photochemically generated dimethylsilylene reacts with oxetane at 0 C to give allyloxydimethylsilane (62) and 2,2-dimethyl-1-oxa-2-silacyclopentane (63, Scheme 14.32).92 No reaction of dimethylsilylene with unstrained aliphatic ethers such as tetrahydrofuran or diethyl ether could be observed. The deoxygenation of cyclooctene oxide with both thermally and photochemically generated dimethylsilylene are also thought to involve the formation of ylide 64, which either extrudes dimethylsilanone (Me2Si O) or simply acts as a ‘‘silanone transfer agent’’ (Scheme 14.33).93 Dimesitylsilylene

672 SILYLENES (AND GERMYLENES, STANNYLENES, PLUMBYLENES)

O

 

 

 

 

OSiMe2H +

 

SiMe2

Me2Si : +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62

 

 

 

 

O 63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

Me2Si

 

b

H

 

 

Me2Si

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 14.32

 

 

Me2Si

 

 

 

Me2

 

 

 

 

 

Si

O

 

 

 

 

 

 

 

 

 

O

 

 

 

O

SiMe2

 

 

 

 

 

O

SiMe2

Me2Si

O

Me2Si : +

 

 

 

 

Me2Si

O

SiMe2

O

 

 

 

 

 

Me Me

 

O

O

 

 

 

 

 

 

 

 

-Si

 

Si

 

 

 

 

 

 

Me2

 

 

 

 

+O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me2Si=O

+

 

 

 

 

 

 

 

 

 

64

Scheme 14.33

generated by the photolysis of 2,2-dimesitylhexamethyltrisilane reacted with epoxides to give dimesitylsilanone-epoxide adducts (66, Scheme 14.34).94

 

 

 

 

 

 

Mes

Mes

 

O

 

 

 

-Si

 

 

 

Mes2Si : +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCH

 

 

CH2

+O

65

 

 

 

 

 

 

 

 

 

RCH

CH2

Mes

Mes

 

O

 

 

 

 

 

 

 

 

 

 

 

Si

O

RCH CH2

Mes2Si

 

O

 

 

O

 

 

 

 

 

RCH CH2

 

+

 

RCH

 

CH2

 

 

66

 

 

 

 

 

 

Scheme 14.34

Theoretical calculations suggest that these reactions are viable routes for the preparation of compounds with Si O, Si S, Si Se double bonds via the barrierless formation of an encounter complex between a silylene and an oxirane or its heavier analogues.95 Silylenes also insert into the silicon–oxygen bond of alkoxysilanes

 

 

 

REACTIONS OF SILYLENES

673

MeO(SiMe2)2OMe

225 oC

Si(OMe)

+ MeO(SiMe2)n OMe

 

 

Me

ð5Þ

 

 

2

 

2

n = 3–6

(Eq. 5).96 The formation of the series MeO(SiMe2)nOMe could be explained by the insertion of dimethylsilylene into either the Si Si or Si O bond. The results show that the reaction proceeds via the insertion into the Si O bond, and alkoxypolysilanes are much more reactive than alkoxymonosilanes toward the silylene insertion. Photochemically generated dimethylsilylene inserts into Si O single bonds of hex-

amethylcyclohexasiloxane (67) to yield 3,5,7-trioxa-1,2,4,6-tetrasilacycloheptane (68, Eq. 6).97

 

 

 

 

Me2

 

 

Me2

 

 

 

 

 

Si

 

Me2Si

Si

 

Me2Si :

+

O

O

 

 

O

ð6Þ

Me2Si

 

 

SiMe2

 

O

 

SiMe2

 

 

 

 

 

 

 

 

 

 

O

 

Me2Si

 

O

 

 

 

 

 

 

 

 

 

 

 

 

67

 

 

 

68

 

4.1.3. Insertion into Si H and Si Si Bonds. Silylenes, generated by thermolysis of cyclotrisilanes, inserted into the Si Cl or Si H bonds of monosilane to yield a variety of disilanes, which could be further functionalized. In contrast to carbenes, the insertion of silylenes into C H bonds has not been observed. However, the insertion into Si H bonds has been studied extensively. The occurrence of

direct insertion has been indicated by formation of nongeminate homocoupling products.98,99

Theoretical calculations suggested three steps for the insertion of silylene into a Si H bond, that is (a) the formation of the complex with the interaction of the hydrogen atom of a silane and the empty orbital of a silylene; (b) the formation

ClAr(Ar')Si-SiMe2Cl

ClArAr'Si-SiMe3

 

 

 

 

 

 

 

 

 

 

HAr(Ar')Si-SiMe2Cl

 

 

54%

 

 

95%

 

Me2SiCl2

ClAr(Ar')Si-SiMe2H

 

 

 

 

 

 

 

78%

 

 

 

Me3SiCl

 

 

 

(Ar')ArSi

 

 

 

 

Me2SiHCl

 

 

 

 

 

 

 

 

 

 

h

ν

 

 

 

 

 

 

 

 

 

Ar(Ar')Si :

 

 

 

SiAr(Ar')

 

 

 

Ph2SiHCl

 

 

 

 

 

70

(Ar')ArSi

69

 

 

 

 

 

 

 

 

 

 

 

Ph2SiH2

 

 

Ph2SiCl2

HAr(Ar')Si-SiPh2Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HAr(Ar')Si-SiPh2H

 

 

 

 

 

ClAr(Ar')Si-SiPh2H

 

 

 

 

ClAr(Ar')Si-SiPh2Cl

 

 

78%

 

 

 

 

78%

83%

 

 

 

 

 

 

 

 

 

Ar = 2-(Me2NCH2)C6H4; R' = 2,4,6-Me3C6H2

Scheme 14.35

674 SILYLENES (AND GERMYLENES, STANNYLENES, PLUMBYLENES)

of the complex between the silyl cation and silyl anion, from which follows the migration of a hydride ion from a silane to a silylene; and (c) a disilane formation through the inversion of the silyl anion.100 The reaction of cyclotrisilane with diphenylsubstituted silanes (70) proceeded analogously; again the insertion of silylene (70) into the Si H bond of Ph2SiHCl being preferred to that into the Si Cl bond (Scheme 14.35). The observation that photolysis of a precursor, silirene (71), to silylene (t-Bu)3Si Si Si(i-Pr)3 (72) leads to the formation of a product of the

formal intramolecular C H insertion, in addition to products from intermolecular Si H insertion (Scheme 14.36).37,38 Photolysis of t-Bu2Si(N3)2 (73) was studied in

 

 

 

(t-Bu)3Si

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

 

(i -Pr)3Si

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HSiMe3

 

 

 

HSiMe3

 

 

 

 

 

 

 

 

 

 

72%

 

 

 

 

 

 

 

 

7.5%

 

 

 

 

 

 

 

 

(t-Bu)3Si

 

Et

 

 

 

 

 

 

 

 

 

(t-Bu)3Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h ν, 254 nm,

(t- Bu)3Si

Si :

 

 

Si

 

 

 

Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90% conversion

 

 

 

 

 

 

 

(i -Pr)3Si

 

(i-Pr)3Si

(i -Pr)3Si

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

71

 

Et

72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h ν, 254 nm,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t-Bu)3Si

 

 

 

 

 

 

H

 

 

 

 

 

63% conversion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t-Bu)2Si

 

 

 

Si-Si(i-Pr)3 HSi(i-Pr)3

 

 

 

 

 

 

 

 

 

 

(i-Pr)3Si

SiH2 +

 

 

 

 

 

 

 

 

 

 

(t-Bu)3Si SiSi(i-Pr)3

 

Me2C

 

 

CH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7%

 

 

 

 

11.1%

 

 

 

 

 

 

 

 

Scheme 14.36

argon and 3-MP matrices at low temperature and found to give di-tert-butylsilylene (74) through an intermediate assigned as diazosilane (75). Silylene 74 has an electronic absorption band at 480 nm; irradiation at 500 nm led to a formation of silirane (Eq. 7).59 On the other hand, thermally generated dimethylsilylene or

t-Bu2Si(N3)2

h ν

t-Bu2SiN=N

hν

t-Bu2Si :

h ν

t-Bu

ð7Þ

 

 

 

 

 

Si

 

 

500 nm

73

 

 

75

 

74

H

 

 

 

 

 

 

 

 

methylphenylsilylene reacts with 1,2-disilacyclobutenes to give trisilacyclopentenes (76, Scheme 14.37),101 which demonstrated the insertion of a silylene into

 

R'

R

 

 

Me2Si

 

Ph

Me2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

Ph

 

 

Me2Si

 

 

 

Ph

Ph

 

 

 

 

 

 

Ph

Si

 

 

 

 

 

 

 

RR'Si :

 

 

 

R'RSi

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

Si

Ph

Ph

 

 

 

 

 

 

 

 

 

Me2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76

 

Scheme 14.37

REACTIONS OF SILYLENES

675

the Si Si bond. However, no insertion is observed with hexamethyldisilane. The difference between the reactivities is the result of the strain of the Si Si bond.

4.2. Additions of Silylenes and Germylenes to Multiple Bonds

4.2.1. Addition to Acetylenes. The nature of the reactions of silylenes with acetylenes is a most perplexing problem. In 1976, Gaspar and Conlin102 isolated tetramethylsilirene (77) from the flash pyrolysis of 1,2-dimethoxy-1,1,2,2-tetra- methyldisilane in the presence of dimethylacetylene (Scheme 14.38). The thermolysis of 77 at 105 C gave only a polymer, and no disilacyclohexadiene was detected. However, thermolysis of 1,1-dimethyl-2-phenyl-3-trimethylsilyl-1-silacy- clopropene at 250 C gave 1,1,4,4-tetramethyl-2,5-diphenyl-3,6-bis(trimethylsilyl)- 1,4-disilacyclohexa-2,5-diene and its isomer in 80% yields in the ratio of 3:1. In the presence of diphenylacetylene, disilacyclohexadiene was not detected.103 The formation of disilacyclohexadiene might take place by direct dimerization of the silacyclopropene even in the presence of diphenylacetylene.

(MeO)Me2SiSiMe2(OMe)

 

600 °C

 

Me2Si : +

Me2Si(OMe)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me2

 

 

Me2

Me2Si : + MeC

 

CMe

 

 

 

 

Si

Me3SiC

 

CSiMe3

Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20%

Me

 

 

Me

Me3Si

 

SiMe3

 

77

 

 

 

 

 

 

 

 

 

Scheme 14.38

Diadamantylsilylene Ad2Si: formed from Ad2SiI2 upon treatment with lithium under ultrasonic irradiation was compared with that formed upon pyrolysis of a silirane (Scheme 14.39).35

Germirenes were also isolated by the reaction of dialkylgermylenes with a cycloheptyne derivative.104 The addition of Me2Si: (and Me2Ge:) has been explained as the result of stepwise addition of triplet divalent species (Scheme 14.40).105

Ad2SiI2

+ HSiEt3

+

Et

 

 

 

 

 

 

 

Et

Li, 0.5h

)))

Ad2HSiSiEt3 +

Ad2SiH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67%

 

17%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, 180 °C

Et

 

 

+ HSiEt3

+

 

 

 

 

 

 

 

 

 

 

 

 

 

Ad2Si

Et

 

 

 

 

 

 

 

Et

 

 

Ad2Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

54%

Scheme 14.39

676 SILYLENES (AND GERMYLENES, STANNYLENES, PLUMBYLENES)

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

h ν

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me2

 

 

PhH

 

 

M = Si, Ge

 

 

 

 

Ph M Ph

S

 

 

 

 

20 oC

S

 

+

 

 

 

 

 

Ph

 

 

 

Me

 

Me

 

 

 

 

 

 

 

 

Ge

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

h ν

PhH 20 oC

Scheme 14.40

Several polysilabicyclosilirenes (79) have been obtained in the reactions of polysilacyclooctynes (78) with dimesitylsilylene generated from the photolysis of 2,2- dimesityl-1,1,1,3,3,3-hexamethyltrisilane (Eq. 8).106 Thermolysis of bis(silacyclopropane) (80) in the presence of bis(trimethylsilyl)acetylene at 60 C affords bis- (silacyclopropene) (81) in 61% yield (Scheme 14.41).107

Mes

Mes

 

Si

 

Me2Si

 

 

 

SiMe2

 

 

 

 

254 nm

 

 

 

Me2Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mes2Si(SiMe3)2

 

 

 

 

 

 

SiMe2

ð8Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(SiMe2)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(SiMe2)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78 n = 2,3,4

 

 

 

 

 

 

 

 

79 n = 2,3,4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me3Si

 

 

 

 

 

 

 

 

 

 

 

Me3Si

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiMe3

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me3Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

Si

 

 

 

 

 

 

 

 

 

 

Ph

 

Si

Si

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

60 oC

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me3Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

81

 

 

 

 

 

 

 

 

Me3Si

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150 oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et3Si

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et3SiH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

Si

 

 

Si

 

 

Ph

82

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

SiEt3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

H

 

 

79%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhSi

 

 

SiPh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85%

 

 

 

 

Scheme 14.41

Соседние файлы в предмете Химия