Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

 

 

 

 

 

 

 

 

 

REACTIONS OF NITRENIUM IONS

627

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

S

 

HN

 

(CH2)7S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

107

 

 

 

 

 

 

 

 

106

 

 

 

Figure 13.52. Macrocyclization through nitrenium ion/arene coupling.

Analogous methods have been applied to the synthesis of macrocycles. Abramovitch et al.24 obtained fair yields of a macrocyclic diarylamine (107) through N to para cyclization of a arylnitrenium ion (106) onto a thiobenzene group (Fig 13.52). In a related study, Abramovitch and Ye170 attempted the addition of an arylnitrene derivative to a tethered alkoxybenzene ring 108. The reaction actually produced the phenanthrene derivative 109. This apparent result is from the coupling of the meta position of the arylnitrenium ion to the 4-position of the proximal arylether. It is argued that the addition proceeds by an initial para to para cyclization to a five membered ring (110). Acylation by trifluoroacetic anhydride induces a 1,2-shift to give 111. The latter is deprotonated to give the observed product (Fig. 13.53).

There are several examples of arylnitrenium ion additions to alkenes (Fig. 13.54). For example, Dalidowicz and Swenton171 trapped N-acetyl-N-(4-methoxyphenyl)- nitrenium ion 112 with 3,4-dimethoxy-1-propenylbenzene and isolated products resulting from addition of the alkene to the ortho position of the nitrenium ion, giving cation 113, followed by its cyclization onto N (yielding 114) or the acetyl carbonyl group (yielding 115).

Similar results were obtained when diphenylnitrenium ion was trapped with various silylenol ethers and silyl ketene acetals (e.g., 116).172 In these experiments, a distribution of N-(117), p- (118), and o- (119) adducts were generated (Fig. 13.55). The ortho adducts underwent a cyclization reaction, producing an indolone derivative.

OO

 

 

 

 

 

F3C O

CF3

 

 

 

 

 

 

 

 

 

HN

CF3CON

 

 

 

 

CF3CONH

 

 

 

 

 

HN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

 

 

 

 

 

 

 

OBn

OBn

 

 

OBn

 

 

 

 

 

 

 

 

 

 

108

110

111

109

Figure 13.53. Cyclization–rearrangement of a arylnitrenium ion.

628

 

NITRENIUM IONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ac

 

 

 

 

 

 

 

 

 

 

H3C

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ac

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

N

Ar

 

 

 

 

 

 

 

Ar

 

 

 

 

 

 

 

 

 

 

+H+

 

 

 

 

 

 

N

 

 

 

 

O

Ar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

Me

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

OMe −MeOH

MeO

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

112

 

 

 

 

113

 

 

 

 

 

 

 

 

 

114

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ar =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

Ar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

115

Figure 13.54. Addition of an arylnitrenium ion to an alkene.

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO OSiMe3

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

N

Ph2N

+

 

 

 

 

 

 

Ph2N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NPh2

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

116

 

 

118

 

117

 

 

 

119

Figure 13.55. Addition of N,N-diphenylnitrenium ion to alkenes.

4.4. Singlet-State Reactions with Hydride Donors

This process has not been studied in detail. It has been shown that diphenylnitrenium ion reacts with various hydrocarbons and metal hydrides to give diphenyl amine.144 An analysis of the rate constants for these processes showed that the reaction was most likely a hydride transfer, rather than a hydrogen atom transfer (Fig. 13.56). Novak and Kazerani173 found a similar process in their study of the decay reaction of heteroarylnitrenium ions.

 

 

 

 

H

H

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph2N+

 

 

 

 

 

 

Ph2NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.56. Hydride transfer.

REACTIONS OF NITRENIUM IONS

629

4.5. Triplet-State Hydrogen Atom Transfer Reactions

Relatively little is known about the chemical reactions of triplet state nitrenium ions. In fact, the only reaction that is unambiguously assigned to this spin state is hydrogen atom transfer. The triplet state has two unpaired electrons. Intuitively, one might suspect that it would behave in a way similar to a free radical. To the extent that unambiguous data are available, this does seem to be the case.

N-tert-Butyl-N-(2-acetylphenyl)nitrenium ion was generated by photolysis of the corresponding anthranilium ion. This photolysis first creates a singlet state of the precursor. The latter partitions between ring opening, providing the singlet-state nitrenium ion, and intersystem crossing, providing the excited triplet state of the

precursor. The latter undergoes a ring opening creating the triplet nitrenium ion (Fig. 13.57).117,156,157

These reactions give three types of stable products: (1) adducts from the addition of nucleophiles (alcohols, water, halides) to the benzene ring, (120); (2) an iminium ion (121), apparently resulting from the 1,2-shift of methyl group, and (3) the parent amine (122). It was argued that 120 and 121 are specific products of the singlet state, whereas 122 is derived from the triplet state. These assignments are supported by several additional experiments. For example, it was shown that the yield of the triplet product was enhanced when the photolysis was carried out using triplet sensitization, but it was suppressed when a triplet quencher (a molecule that deactivates the excited triplet state of the precursor by an energy-transfer mechanism) was employed.117 Several other anthranilium ion generated nitreniuim

ions were investigated in this manner and they all showed qualitatively similar

behavior.118,156,157,174,175

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

A

 

 

 

 

 

 

 

 

 

A1*

 

 

 

 

 

N1

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

Me

 

 

 

 

 

Me

 

C

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

triplet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

121

 

 

 

 

 

 

 

 

 

 

 

Me

sensitization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A3*

 

 

 

 

 

N3

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

Me

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A =

 

 

O

 

N =

 

 

 

 

 

 

 

Me

 

C

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

Me

 

 

C

 

 

 

Me

122

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.57. Spin-specific chemistry of arylnitrenium ions.

630 NITRENIUM IONS

 

 

 

 

Me

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2N

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

Ar

N

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

C

 

 

 

 

Me

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

124

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3*

 

 

 

 

 

 

 

3

 

 

O

 

 

 

 

 

Me

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph3CH O2N

 

 

 

 

 

 

 

 

O2N

 

 

 

O2N

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

Ph3C

 

 

 

 

 

 

200 ns

 

 

 

 

 

 

 

2 s

 

N

H

 

N

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t-Bu

 

 

 

 

 

t-Bu

 

 

 

t-Bu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

125

 

 

 

 

 

 

123

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.58. Evidence for a triplet ground-state arylnitrenium ion.

The 4-nitro derivative in the anthranilium ion series showed qualitatively different behavior (Fig. 13.58).119 For one thing, it proved impossible to trap it using any external nucleophile. On the other hand, significant yields of the iminium ion 124 and the parent amine were observed. Only the parent amine was observed when the decomposition was carried out through triplet energy transfer. Laser flash photolysis experiments were not successful at detecting the nitrenium ion, but instead showed that the excited triplet state of the precursor 125 was formed. Addition of a hydrogen atom donor, Ph3CH, resulted in formation and detection of the corresponding radical, Ph2C . The latter’s growth did not correlate with the disappearance of triplet state 125. Instead, there was a 2-ms delay (extrapolated to [Ph3CH] ¼ 0 M) between the disappearance of 125 and formation of Ph3C . The delay time corresponds to the lifetime of the triplet nitrenium ion. That no singlet products (i.e., 124) were formed in the triplet sensitization experiment led to the conclusion that either the nitrenium ion 123 was a ground-state triplet or else that the singlet was ground state but that intersystem crossing was anomalously slow in this system.

The parent nitrenium ion (NHþ2 ) is firmly established as a ground-state triplet: both extensive ab initio calculations as well as PES experiments all agree that the singlet–triplet energy gap is 30 kcal/mol. There have been several investigations on its behavior in solution. Takeuchi et al.141 showed that this species could be generated by photolysis of 1-amino-(2,4,6-triphenylpyridinium) ion. These photolyses were carried out in the presence of various aromatic compounds. It was found that the triplet state abstracted hydrogen atoms from traps such as toluene

 

 

 

 

 

 

 

 

SPECTROSCOPIC AND KINETIC STUDIES OF NITRENIUM IONS 631

 

 

toluidines

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

khyd

 

 

 

 

 

 

 

 

 

PhCH3

 

CH3

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1NH2+

 

 

PhCH3

 

NH3

 

 

 

PhCH2+

 

 

 

 

 

 

 

 

 

(+ ortho isomer)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

CH2Ph

 

Ph

kST

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH3 +

 

 

 

 

PhCH2

PhCH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3NH2

 

 

 

PhCH3

 

 

 

 

 

 

 

 

 

 

PhCH2CH2Ph (bibenzyl)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.59. Hydrogen atom transfer to triplet nitrenium ion.

(Fig. 13.59). Srivastava et al.158 carried out similar experiments and demonstrated that the singlet was formed initially upon photolysis. This species either inserts into the OH bond of water or it suffers intersystem crossing to the lower energy triplet. As in the former study, the only reaction found for the triplet was hydrogen atom transfer.

4.6. Intersystem Crossing

The interconversion of singlet states and triplet states is known as intersystem crossing. To date, a direct observation of this process has not been reported other than for the decay of the excited triplet state of the highly stabilized nitrenium ion 7 (Fig. 13.2). In several cases, intersystem crossing has been inferred from studies of product distributions. For example, the photolytic generation of NHþ2 creates the singlet state which abstracts a hydride from toluene to give the benzyl cation (Fig. 13.59). The latter adds to an additional molecule of toluene to give ortho and para benzyltoluenes. In contrast, the triplet abstracts a hydrogen atom from toluene. The resulting benzyl radicals dimerize in a head-to-head fashion giving bibenzyl. It was found that the ratio of bibenzyl to the benzyltoluenes increased with the addition of an unreactive diluent to the toluene trap. An analysis of these

data yields a ratio of the intersystem crossing rate constant, kST, to the rate constant for hydride transfer from the singlet, khyd, of kST=khyd ¼ 31 M.158 Assuming a diffusion limited rate constant for hydride transfer, khyd ¼ 1–10 109 M 1 s 1, it is

possible to estimate kST as between 3 1011 s 1 and 3 1012 s 1. Direct ultrafast measurements of these values would be desirable.

5. SPECTROSCOPIC AND KINETIC STUDIES OF NITRENIUM IONS

5.1. Brief Summary of Methods

Many studies of carbenium ions have made use of superacid media for their generation and characterization. Attempts to apply this method to the study of nitrenium ions have been largely unsuccessful. The reason is that singlet nitrenium

632 NITRENIUM IONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H+

 

 

 

 

 

 

 

 

 

H+

Ar

 

 

N

 

O

 

H

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

127

 

 

 

Ar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ar

 

N

 

O H+

 

 

 

 

 

 

 

H

 

 

H+

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126

 

Ar

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.60. Attempt to protonate nitrosocompound gives dication.

 

 

 

 

 

 

N

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

OH superacid

 

 

C

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ar

Ar

Ar

 

 

Ar

 

Ar Ar

 

 

128

 

 

129a

 

129b

Figure 13.61. Vinylidene nitrenium ion stabilized in superacid media.

ions can serve as weak bases due to their nonbonding electron pairs. For example, attempts to generate N-hydroxyl-N-phenylnitrenium ion 127 through the protona-

tion of N-nitrosobenzene 126 resulted in the formation of the dication (Fig. 13.60).176 Olah and co-workers177–179 did succeed in creating alkylidenenitren-

ium ions. This result was accomplished by treating cyanohydrins 128 with superacid, creating a-cyanocarbenium ion 129a, which can be regarded as a nitrenium ion on the basis of resonance structure 129b (Fig. 13.61).

A major concern in nitrenium ion research has been to characterize the lifetimes and reaction rates of these species in solution. Two techniques have been the mainstays of this research. The oldest and most generally applicable method to characterize arylnitrenium ion lifetimes in solution is to measure the relative yields of the stable products. The ratio of rate constants can then be inferred from the product ratios.

One specific embodiment of this approach has been to use the azide (az) clock method (Fig. 13.62).180–182 Azide ion (N3 ) is a very strong nucleophile (Nu) and is

thus assumed to react with most arylnitrenium ions at the diffusion—limited rate,

NHR

kaz [N3]

N3

N

R

NHR

knuc[Nuc]

Nuc

Figure 13.62. Azide clock method for determining arylnitrenium ion reaction rate constants.

SPECTROSCOPIC AND KINETIC STUDIES OF NITRENIUM IONS

633

 

 

 

 

 

kAz[N3]

N3

NH2

 

NH

 

 

 

130

kw = 1/1.5 ns

HO

NH2

 

Figure 13.63. Lifetime of a nitrenium ion in aqueous solvent.

5 109 M 1 s 1. Direct measurements of azide trapping reactions have generally

validated this assumption (see Chapter 2). Except for highly stabilized nitrenium ions, kaz, is seen to fall in a narrow range of 4–10 109 M 1 s 1. 11,131,183 The yield

of azide adducts relative to the competing products can be used to estimate the rate constants for formation of the latter.

In view of the role of arylnitrenium ions in carcinogenic DNA damage, there has been much interest in their lifetimes in aqueous solution. Arylnitrenium ions that are rapidly consumed through hydrolysis are unlikely to have lifetimes sufficient

for them to diffuse through the cell, penetrate the nucleus and damage the DNA. Fishbein and McClelland84,184,185 trapped the 2,6-xylylnitrenium ion (130) gener-

ated in the Bamberger rearrangement (acid-catalyzed decomposition of the corresponding hydroxylamine) with N3 . On the basis of product ratios and the assumption that the reaction of azide was diffusion limited, it was concluded that the lifetime of this nitrenium ion in aqueous solution was 1.5 ns. Such a short lifetime implies that this nitrenium ion (Fig. 13.63) would probably not be able to efficiently attack DNA in an aqueous cellular environment.

Several representative selectivity values Sð¼ log½kaz=kw&Þ derived in this manner are listed in Table 13.4. In the main, para-substituted aromatic rings and alkenyl

TABLE 13.4. Relative Selectivities ðS ¼ log kaz=k2Þ

Derived from Azide Trapping of R1R2Nþa

R1

 

R2

S

4-Biphenylyl

Ac

2.97

4-Biphenylyl

H

3.45

2-Fluorenyl

Ac

4.76

2-Fluorenyl

H

5.07

4-Ethoxyphenyl

Ac

2.73

4-Ethoxyphenyl

H

3.68

4(40

-Methoxybiphenylyl)

H

6.59

4(40

-Fluorobiphenylyl)

H

3.85

a See Ref. 14.

634 NITRENIUM IONS

groups show the most profound effect on the selectivity. This effect is seen in the series of fluorenyl and 4-biphenylyl nitrenium ions that have S mostly in excess of 3.5, ranging as high as 6.59. Alkoxy groups, which are generally regarded as stronger donors, show more modest effects on the selectivity, falling in the range of 2.7– 3.7. Alkyl groups are even less effective in conferring aqueous stability, showing S values <1.0. N-Alkyl and N-acetyl groups have only modest effects on S usually increasing or decreasing it by <1 relative to H.

The azide clock approach has the advantage of being universally applicable to any arylnitrenium ion that can be generated in aqueous solution (azide salts are typically insoluble or sparingly soluble in nonaqueous media). This corresponds to the conditions regarded as most relevant to their toxicological behavior. The method can also be adapted to the study of trapping rate constants for reagents other than water. The major disadvantage of this approach is that it only can give accurate rate constants in cases where the assumption of diffusion limited trapping is valid and preassociation of the azide with the precursor does not occur,

Laser flash photolysis methods have also been applied to the study of nitrenium ion trapping rates and lifetimes. This method relies on short laser pulses to create a high transient concentration of the nitrenium ion, and fast detection technology to characterize its spectrum and lifetime The most frequently used detection method is fast UV–vis spectroscopy. This method has the advantage of high sensitivity, but provides very little specific information about the structure of the species being detected. More recently, time-resolved infrared (TRIR) and Raman spectroscopies have been used in conjunction with flash photolysis methods. These provide very detailed structural information, but suffer from lower detection sensitivity.

5.2. Ultraviolet–Visible Spectra of Nitrenium Ions

The first nitrenium ion to be examined using any flash photolysis method was the 4- dimethylaminophenylnitrenium ion (131).186 However, the workers who carried out these experiments apparently did not consider this species to be a nitrenium ion. It was generated by pulsed Xe lamp photolysis from the corresponding azide (132, Fig. 13.64), and was detected through its absorption at 325 nm. As the resonance structure 131 implies, this nitrenium ion (or quinonediimine) is especially stable. In fact, its lifetime exceeds 100 ms at neutral pH, and it decays through hydrolysis of the C N bond to give iminoquinone (133).

N3

 

 

 

N H

 

 

 

N H

 

hν

 

 

 

 

H2O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NMe2

H2O

 

 

 

 

 

 

>100 ms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

132

131

 

 

133

 

 

Figure 13.64. First arylnitrenium ion detected by direct spectroscopic methods.

SPECTROSCOPIC AND KINETIC STUDIES OF NITRENIUM IONS

635

TABLE 13.5. N-tert-Butyl-N-aryl Nitrenium Ions

 

Generated through LFP of Anthranilium Ion Saltsa

 

 

 

 

 

 

 

 

Xb

lmax

t in MeCN (ns)

ktrap

(Trap)c

 

 

 

 

 

6

 

 

Cl

385

0.14

3:2 106

 

 

Br

395

0.13

1:3 107

 

 

CH3

460

0.40

3:1

104

 

 

Ph

470

30

6:2

105

 

 

OMe

500

600

2:1

10

 

 

a See Refs. 157 and 175.

b Aryl substituent para to the nitrenium ion. c The trap is water.

The study of more typically reactive nitrenium ions had to await the application of faster methods. Nearly two decades later, nanosecond LFP methods were applied to the ring opening of anthranilium ions (Fig. 13.29).174 A series of alkylarylnitre-

nium ions were characterized in this manner and the results are compiled in Table 13.5.117,157,175 These species in general had much shorter lifetimes (<50 ms)

than the quinone diimine. The 4-halonitrenium ions of this class show absorption maxima at wavelengths <400 nm, along with a weak tail that extends into the visible. For the 4-methyl derivative, only the weak tail can be detected. The UV maximum apparently overlaps with the absorption band of the starting material. Substitution by a phenyl ring or an alkoxy group shifts the absorption maximum into the visible region of the spectrum. Interestingly, it is the 4-phenyl substituent that has the most profound effect on the stabilization of the nitrenium ion toward attack by H2O.

The next development in direct detection of nitrenium ions came from McClelland et al.120 who applied the azide method to LFP measurements. This permitted the direct detection of those arylnitrenium ions implicated in carcinogenic

DNA damage. McClelland’s approach proved to be particularly useful in the study of 4-aryl2,129,131 and 4-alkoxy substituted phenylnitrenium ions.130 Apparently, the

corresponding singlet nitrenes are sufficiently long lived to allow for protonation in aqueous solution. Several arylnitrenium ions studied by this route are described in Table 13.6.

TABLE 13.6. Arylnitrenium Ions (Ar Nþ H) Generated from Arylazide Photolysis in Protic Media

Ar

lmax

t ðmsÞ

Reference

4-Biphenylyl

465

0.35/H2O

183

2-Fluorenyl

460

75/H2O

183

40-MeO-4-Biphenylyl

500

633/H2O

183

2-(1-Methylimidazolyl)

235

100,000/H2O

183

4-Stilbenyl

520

0.16/H2O

167

4-MeO-phenyl

300

0.8/H2O

183

2,4,6-Tribromophenyl

420, 600

0.2/MeCN/H2O

125

4-hydroxymethyl-2,3,5,6-tetrafluorophenyl

375

>1000/MeCN

128

 

 

 

 

636 NITRENIUM IONS

TABLE 13.7. Absorption Maxima (nm), Lifetimes, and Trapping Rate Constants (M 1 s 1) of Nitrenium Ions Characterized by Laser Flash Photolysis of N-Aminopyridinium Saltsa

R1

R2

lmax

tðmsÞ

 

ktrap

(Trap)

 

 

 

 

 

5

(H2O)

Ph

Ph

435, 690

1.6 (MeCN)

6:1 104

4-Tolyl

4-Tolyl

425,680

280 (MeCN)

1:9 104

(H2O)

4-Biphenylyl

Me

460

24 (MeCN)

9:3 106

(H2O)

4-Chlorophenyl

Me

340

0.95 (MeCN)

8:9

104

(H2O)

4-MeO-phenyl

Me

320

100 (MeCN)

5:5

107

(H2O)

4-Tolyl

Me

330

7.4 (MeCN)

2:3

108

(H2O)

1-Naphthyl

Me

500

0.8 (MeCN)

1:7

10

(H2O)

a See Refs. 145, 146, and 163.

The aminopyridinium route has been employed in flash photolysis studies of aryl as well as diarylnitrenium ions. Several examples of nitrenium ion species, along with their absorption maxima and some trapping rate constants are given in Table 13.7. To the extent the data are comparable, there is good agreement with the behavior of nitrenium ions generated by the azide route. For example, the 4- biphenylyl systems from the azide protonation and N-aminopyridinium routes both give absorption maxima at 460 nm and live for several microseconds in water. Likewise, the 4-methoxyphenyl systems show maxima at 300 nm (from azide) and 320 nm (from aminopyridinium ion). The discrepancy in this case can be attributed to the N-methyl substituent, present in the aminopyridinium route, but absent in the azide experiment.

5.3. Infrared and Raman Spectra of Nitrenium Ions

A promising recent development in the study of nitrenium ions has been the introduction of time-resolved vibrational spectroscopy for their characterization. These methods are based on pulsed laser photolysis. However, they employ either time resolved IR (TRIR) or time-resolved resonance Raman (TRRR) spectroscopy as the mode of detection. While these detection techniques are inherently less sensitive than UV–vis absorption, they provide more detailed and readily interpretable spectral information. In fact, it is possible to directly calculate these spectra using relatively fast and inexpensive DFT and MP2 methods. Thus, spectra derived from experiment can be used to validate (or falsify) various computational treatments of nitrenium ion structures and reactivity. In contrast, UV–vis spectra do not lend themselves to detailed structural analysis and, moreover, calculating these spectra from first principles is still expensive and highly approximate.

The first study of this nature involved the application of TRIR to diphenylnitrenium ion (Fig. 13.65).187 This species gave strong distinct transient IR bands at 1568, 1440, and 1392 cm 1. It was further demonstrated that the decay of these signals followed the same kinetics found by UV–vis detected LFP for the same

Соседние файлы в предмете Химия