Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

REFERENCES 587

SUGGESTED READING

H. M. L. Davies and E. G. Antoulinakis, ‘‘Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations,’’ Org. React. (N. Y.) 2001, 57, 1.

M. P. Doyle and D. C. Forbes, ‘‘Recent Advances in Asymmetric Catalytic Metal Carbene Transformations,’’ Chem. Rev. 1998, 98, 911.

A. Fu¨rstner, ‘‘Olefin Metathesis and Beyond,’’ Angew. Chem. Int. Ed. Engl. 2000, 39, 3012.

D. M. Hodgson, F. Y. T. M. Pierand, and P. A. Stupple, ‘‘Catalytic Enantioselective Rearrangements and Cycloadditions Involving Ylides from Diazo Compounds,’’ Chem. Soc. Rev. 2001, 30, 50.

H.Lebel, J.-F. Marcoux, C. Molinaro, and A. B. Charette, ‘‘Stereoselective Cyclopropanation Reactions,’’ Chem. Rev. 2003, 103, 977.

P, Mu¨ller, ‘‘Transition Metal-Catalyzed Nitrene Transfer: Aziridination and Insertion,’’ in Advances in Catalytic Processes, Vol. 2, M. P. Doyle, Ed., JAI Press, Greenwich, CT,

pp. 113 f .

T.M. Trnka and R. H. Grubbs, ‘‘The Development of L2X2Ru CHR Olefin Metathesis Catalysts: An Organometallic Success Story,’’ Acc. Chem. Res. 2001, 34, 18.

W.D. Wulff, ‘‘Transition Metal Carbene Complexes: Alkyne and Vinyl Ketene Chemistry,’’ in

Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, NY, 1995, Chapter 5.3, pp. 469 f .

REFERENCES

1.J. Hine, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York, 1962.

2.J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures; McGraw-Hill, New York, 1968.

3.P. Yates, J. Am. Chem. Soc. 1952, 74, 5376.

4.E. O. Fischer and K. H. Do¨tz, Chem. Ber. 1970, 103, 1273.

5.K. H. Do¨tz, Angew. Chem., Int. Ed. Engl. 1984, 23, 587. K. H. Do¨tz, Transition Metal Carbene Complexes; VCH Publishing, New York, 1983.

6.M. P. Doyle, M. A. McKervey, and T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, John Wiley & Sons, Inc., New York, 1998.

7.W. D. Wulff, in Advances in Metal-Organic Chemistry, Vol. 1, L. Liebeskind, Ed., JAI Press, Greenwich, CT, 1989.

8.(a) R. H. Crabtree, The Organic Chemistry of the Transition Metals, 3rd ed., John Wiley

& Sons, Inc., New York, 2000. (b) J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, 2nd ed., University Science Books, Herndon, VA, 1987.

9.M. Brookhart and W. B. Studabaker, Chem. Rev. 1987, 87, 411.

10.C. P. Casey, S. W. Polichnowski, A. J. Shustermann, and C. R. Jones, J. Am. Chem. Soc. 1979, 101, 7282.

11.(a) R. R. Schrock and G. W. Parshall, Chem. Rev. 1976, 76, 243. (b) P. J. Davidson, M. F. Lappert, and R. Pearce, Chem. Rev. 1976, 76, 219. (c) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18. (d) H. Eleuterio, CHEMTECH 1991, 92. (e) F. Z. Dorwald and

588SYNTHETIC CARBENE AND NITRENE CHEMISTRY

R.H. Grubbs, Metal Carbenes in Organic Synthesis, VCH Publishing, New York,

1999.

12.R. R. Shrock, Acc. Chem. Res. 1990, 23, 158.

13.S. T. Nguyen, L. K. Johnson, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc. 1992, 114, 3974.

14.(a) M. Scholl, T. M. Trnka, J. P. Morgan, and R. H. Grubbs, Tetrahedron Lett. 1999, 40, 2247. (b) J. Huang, E. D. Stevens, S. P. Nolan, and J. L. Peterson, J. Am. Chem. Soc. 1999, 121, 2674.

15.(a) M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, Org. Lett. 1999, 1, 953. (b) L. Jafarpour, A. C. Hillier, and S. P. Nolan, Organometal. 2002, 21, 442.

16.C. P. Casey and M. C. Cesa, Organometal. 1982, 1, 87.

17.G. Stork and J. Ficini, J. Am. Chem. Soc. 1961, 83, 4678.

18.S. D. Burke and P. A. Grieco, Org. React. (N. Y.), 1979, 26, 361.

19.K. Mori, M. Ohki, A. Kobayashi, and M. Matsui, Tetrahedron, 1970, 26, 2815.

20.F. Medina and A. Majarrez, Tetrahedron 1964, 20, 1807.

21.D. H. Rogers, E. C. Yi, and C. D. Poulter, J. Org. Chem. 1995, 60, 941.

22.D. A. Evans, K. A. Woerpel, M. M. Hinman, and M. M. Faul, J. Am. Chem. Soc. 1991, 113, 726.

23.(a) H. M. L. Davies, P. R. Bruzinski, D. H. Lake, N. Kong, and M. J. Fall, J. Am. Chem. Soc. 1996, 118, 6897. (b) M. A. McKervey, and T. Ye, J. Chem. Soc., Chem. Commun.

1992, 823.

24.(a) M. P. Doyle, R. J. Pieters, S. F. Martin, R. E. Austin, C. J. Oalmann, and P. J. Mu¨ller,

J.Am. Chem. Soc. 1991, 113, 1423. (b) M. P. Doyle, W. R. Winchester, M. N.

Protopopova, A. P. Kazula, and L. J. Westrum, Org. Syn. 1996, 73, 13. (c) For applications with polymer supported catalyst: M. P. Doyle, D. J. Timmons, J. S. Tumonis, H.-M. Gau, and E. C. Blossey Organometal. 2002, 21, 1747.

25.T. Uchida, R. Irie, and T. Katsuki, Tetrahedron 2000, 56, 3501.

26.S. Kitagaki, M. Anada, O. Kataoka, K. Matsuno, C. Umeda, N. Watanabe, and S.-i. Hashimoto, J. Am. Chem. Soc. 1999, 121, 1417.

27.T. Ikeno, M. Sato, H. Sekino, A. Nishizaka, and T. Yamada, Bull. Chem. Soc. Jpn. 2001, 74, 2139.

28.M. P. Doyle, R. E. Austin, A. S. Bailey, M. P. Dwyer, A. B. Dyatkin, A. V. Kalinin, M. M. Y. Kwan, S. Liras, C. J. Oalmann, R. J. Pieters, M. N. Protopopova, C. E. Raab, G. H. P. Roos, Q.-L. Zhou, and S. F. Martin, J. Am. Chem. Soc. 1995, 117, 5763.

29.H. M. L. Davies, T. Hansen, and M. R. Churchill, J. Am. Chem. Soc. 2000, 122, 3063.

30.M. P. Doyle, W. Hu, and D. J. Timmons, Org. Lett. 2001, 3, 933.

31.H. M. L. Davies and E. G. Antoulinakis, Org. React. (N. Y.) 2001, 57, 1.

32.M. P. Doyle and D. C. Forbes, Chem. Rev. 1998, 98, 911.

33.M. P. Doyle, in Catalytic Asymmetric Synthesis, 2nd ed., I. Ojima, Ed., Wiley-VCH, New York, 2000.

34.P. Mu¨ller, and C. Bole´a, Helv. Chim. Acta 2001, 84, 1093.

35.W. D. Wulff, in Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 5.3.

36.L. S. Hegedus, in Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 5.4.

REFERENCES 589

37.J. P. A. Harrity, W. J. Kerr, and D. Middlemiss, Tetrahedron 1993, 49, 5565.

38.B. B. Snider, Chem. Rev. 1998, 88, 793.

39.A. Yamashita, Tetrahedron Lett. 1986, 27, 5915.

40.G. W. Parshall and S. D. Ittel, Homogeneous Catalysis, 2nd ed., John Wiley & Sons, Inc., New York, 1992.

41.J. S. Moore, in Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 12.2.

42.R. H. Grubbs and W. Tumas, Science 1989, 243, 907.

43.(a) M. R. Buchmeiser, Chem Rev. 2000, 100, 1565. (b) U. H. F. Bunz, Acc. Chem. Res. 2001, 34, 998.

44.K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization; Academic Press, London, 1997.

45.(a) M. Schuster and S. Blechert, Angew. Chem., Int. Ed. Engl. 1997, 36, 2036. (b) R. H. Grubbs and S. Chang, Tetrahedron 1998, 54, 4413. (c) A. Fu¨rstner, Angew. Chem., Int. Ed. Engl. 2000, 39, 3012.

46.(a) P. Schwab, M. P. France, J. W. Ziller, and R. H. Grubbs, Angew Chem., Int. Ed. Engl. 1995, 34, 2039. (b) For applications with a polymer-supported catalyst: L. Jafarpour and

S.P. Nolan, Org. Lett. 2000, 2, 4075.

47.A. Fu¨rstner, O. R. Thiel, and L. Ackerman, Org. Lett. 2001, 3, 449.

48.A. K. Chatterjee, J. P. Morgan, M. Scholl, and R. H. Grubbs, J. Am. Chem. Soc. 2000, 122, 3783.

49.J. R. Stille, in Comprehensive Organometallic Chemistry II, Vol.12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 5.5.

50.(a) W.-H. Fang, D. L. Phillips, D. Wang, and Y.-L. Li, J. Org. Chem. 2002, 67, 154.

(b) E. Nakamura, A. Hirai, and M. Nakamura, J. Am. Chem. Soc. 1998, 120, 5844.

51.F. N. Tebbe, G. W. Parhsall, and G. S. Reddy, J. Am. Chem. Soc. 1978, 100, 3611.

52.K. C. Nicolaou, M. D. D. Postema, and C. F. Claiborne, J. Am. Chem. Soc. 1996, 118, 1565.

53.D. A. Straus and R. H. Grubbs, Organometal. 1982, 1, 1658.

54.A. B. Charette, in Organozinc Reagents: A Practical Approach, P. Knochel, and P. Jones, Eds., Oxford University Press, Oxford, 1999.

55.S. E. Denmark, J. P. Edwards, and S. R. Wilson, J. Am. Chem. Soc. 1992, 114, 2592.

56.A. H. Hoveyda, D. A. Evans, and G. C. Fu, Chem. Rev. 1993, 93, 1307.

57.D. Cheng, T. Kreethadumrongdat, and T. Cohen, Org. Lett. 2001, 3, 2121. The first report on the directing ability of hydroxyl groups was S. Winstein, J. Sonnenberg, and

L.deVries, J. Am. Chem. Soc. 1959, 81, 6523.

58.A. B. Charette, A. Beauchemin, and S. Francoeur, J. Am. Chem. Soc. 2001, 123, 8139.

59.A. B. Charette, A. Gagnon, and J.-F. Fournier, J. Am. Chem. Soc. 2002, 124, 386.

60.A. B. Charette, C. Molinaro, and C. Brochu, J. Am. Chem. Soc. 2001, 123, 12168.

61.M. Regitz and G. Maas, Diazo Compounds: Properties and Syntheses, Academic Press, New York, 1986.

62.T. Fukuda and T. Katsuki, Tetrahedron 1997, 53, 7201.

63.T. Niimi, T. Uchida, R. Irie, and T. Katsuki, Tetrahedron Lett. 2000, 41, 3647.

590SYNTHETIC CARBENE AND NITRENE CHEMISTRY

64.(a) M. P. Doyle and W. Hu, J. Org. Chem. 2000, 65, 8839. (b) M. P. Doyle, W. Hu, B. Chapman, A. B. Marnett, C. S. Peterson, J. P. Vitale, and S. A. Stanley, J. Am. Chem. Soc. 2000, 122, 5718.

65.E. J. Corey and T. G. Grant, Tetrahedron Lett. 1994, 35, 5373.

66.M. P. Doyle and W. Hu, Adv. Synth. Catal. 2001, 343, 299.

67.T. G. Grant, M. C. Noe, and E. J. Corey, Tetrahedron Lett. 1995, 36, 8745.

68.(a) M. P. Doyle, M. N. Protopopova, P. Mu¨ller, D. Ene, and E. A. Shapiro, J. Am. Chem. Soc. 1994, 116, 8492. (b) P. Mu¨ller and H. Imogaı¨, Tetrahedron: Asymmetry 1998, 9, 4419.

69.M. P. Doyle and W. Hu, Synlett 2001, 1364.

70.M. P. Doyle, C. S. Peterson, M. N. Protopopova, A. B. Marnett, D. L. Parker, Jr.,

D.G. Ene, and V. Lynch, J. Am. Chem. Soc. 1997, 119, 8826.

71.M. P. Doyle, D. G. Ene, C. S. Peterson, and V. Lynch, Angew. Chem. Int. Ed. Engl. 1999, 38, 700.

72.M. P. Doyle and M. N. Protopopova, Tetrahedron 1998, 54, 7919.

73.(a) R. Tokunoh, B. Fa¨hndrich, and A. Pfaltz, Synlett 1995, 491. (b) M. Barberis, J. PerezPrieto, S.-E. Stiriba, and P. Lahuerta, Org. Lett. 2001, 3, 3317, 4325.

74.D. F. Taber, in Houben-Weyl: Methods of Organic Chemistry, Vol. E2la, G. Helmchen, Ed., Georg Thieme Verlag, Stuttgart, Germany, 1995, Chapter 1.2.

75.D. F. Taber and E. H. Petty, J. Org. Chem. 1982, 47, 4808.

76.M. P. Doyle, M. S. Shanklin, S.-M. Oon, H.-Q. Pho, F. R. van der Heide, and W. R. Veal,

J.Org. Chem. 1988, 53, 3384.

77.A. Padwa, D. J. Austin, A. T. Price, M. A. Semonis, M. P. Doyle, M. N. Protopopova,

W.R. Winchester, and A. Tran, J. Am. Chem. Soc. 1993, 115, 8669.

78.D. F. Taber and R. E. Ruckle, Jr., J. Am. Chem. Soc. 1986, 108, 7686.

79.P. Wong and J. Adams, J. Am. Chem. Soc. 1994, 116, 3296.

80.E. Nakamura, N. Yoshikai, and M. Yamanaka, J. Am. Chem. Soc. 2002, 124, 7181.

81.M. P. Doyle, L. J. Westram, W. N. E. Wolthuis, M. M. See, W. P. Boone, V. Bagheri, and

M.M. Pearson, J. Am. Chem. Soc. 1993, 115, 958.

82.H. Saito, H. Oishi, S. Kitagaki, S. Nakamura, M. Anada, and S. Hashimoto, Org. Lett. 2002, 4, 3887.

83.M. P. Doyle, Q.-L. Zhou, C. E. Raab, G. H. P. Roos, S. H. Simonsen, and V. Lynch, Inorg. Chem. 1996, 35, 6064.

84.J. W. Bode, M. P. Doyle, M. N. Protopopova, and Q.-L. Zhou, J. Org. Chem. 1996, 61, 9146.

85.M. P. Doyle, J. S. Tedrow, A. B. Dyatkin, C. J. Spaans, and D. G. Ene, J. Org. Chem. 1999, 64, 8907.

86.M. P. Doyle and W. Hu. Chirality 2002, 14, 169.

87.H. M. L. Davies and E. G. Antoulinakis, J. Organometal. Chem. 2001, 617, 47.

88.H. M. L. Davies and P. Ren, J. Am. Chem. Soc. 2001, 123, 2070.

89.H. M. L. Davies, D. G. Stafford, and T. Hansen, Org. Lett. 1999, 1, 233.

90.(a) A. Padwa and S. F. Hornbuckle, Chem. Rev. 1991, 91, 263. (b) D. M. Hodgson, F. Y. T.

M.Pierand, and P. A. Stupple, Chem. Soc. Rev. 2001, 30, 50.

REFERENCES 591

91.M. P. Doyle, D. C. Forbes, M. M. Vasbinder, and C. S. Peterson, J. Am. Chem. Soc. 1998, 120, 7653.

92.A. Padwa, J. P. Snyder, E. A. Curtis, S. M. Sheehan, K. J. Worsencroft, and C. O. Kappe,

J.Am. Chem. Soc. 2000, 122, 8155.

93.N. Watanabe, Y. Ohtake, S.-i. Hashimoto, M. Shiro, and S. Ikegami, Tetrahedron Lett. 1995, 36, 1491.

94.M. Kennedy, M. A. McKervey, A. R. Maguire, S. M. Tuladhar, and M. F. Twohig,

J.Chem. Soc., Perkin Trans 1 1990, 1047.

95.T. N. Salzmann, R. W. Ratcliffe, B. G. Christensen, and F. A. Bouffard, J. Am. Chem. Soc. 1980, 102, 6161.

96.R. Connell, F. Scavo, P. Helquist, and B. Akermark, Tetrahedron Lett. 1986, 27, 5559.

97.(a) K. Ruck-Braum, M. Mikulas, and P. Amrhein, Synthesis 1999, 727. (b) W. Petz, IronCarbene Complexes, Springer-Verlag: Berlin, 1993.

98.J. Barluenga, S. Martinez, A. L. Sua´rez-Sobrino, and M. Toma´s, J. Am. Chem. Soc. 2002, 124, 5948.

99.S. Ishii, S. Zhao, G. Mehta, C. J. Knors, and P. Helquist, J. Org. Chem. 2001, 66, 3449.

100.J. W. Herndon and H. Wang, J. Org. Chem. 1998, 63, 4564.

101.J. Barluenga, M. Toma´s, E. Rubio, J. A. Lo´pez-Pelegrin, S. Garcia-Granda, and

P.Pertierra, J. Am. Chem. Soc. 1996, 118, 695.

102.H. Wang and W. D. Wulff, J. Am. Chem. Soc. 1998, 120, 10573.

103.H. Kagoshima, T. Okamura, and T. Akiyama, J. Am. Chem. Soc. 1998, 121, 4516.

104.J. D. White, P. Hrnciar, and F. T. Yokochi, J. Am. Chem. Soc. 1998, 120, 7359.

105.W. P. D. Goldring and L. Weiler, Org. Lett. 1999, 1, 1471.

106.D. J. Dixon, A. C. Foster, and S. V. Ley, Org. Lett. 2000, 2, 123.

107.(a) C. W. Lee, T.-L. Choi, and R. H. Grubbs, J. Am. Chem. Soc. 2002, 124, 3224. (b) H. Biera¨ugel, T. P. Jansen, H. E. Shoemaker, H. Hiemstra, J. H. van Maarseveen, Org. Lett. 2002, 4, 2673. (c) T.-L. Chio, C. W. Lee, A. K. Chatterjee, and R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 10417.

108.C. W. Lee and R. H. Grubbs, Org. Lett. 2000, 2, 2145.

109.T. J. Seiders, D. W. Ward, and R. H. Grubbs, Org. Lett. 2001, 3, 3225.

110.R. R. Schrock, J. Y. Jamieson, S. J. Dolman, S. A. Miller, P. J. Bonitatebus, Jr., and A. H. Hoveyda, Organometal. 2002, 21, 409.

111.X. Teng, D. R. Cefalo, R. R. Schrock, and A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 10779.

112.D. S. La, E. S. Sattely, J. G. Ford, R. R. Schrock, and A. H. Hoveyda, J. Am. Chem. Soc. 2001, 123, 7767.

113.M. P. Heck, C. Baylon, S. P. Molan, and C. Mioskowski, Org. Lett. 2001, 3, 1989.

114.A. Fu¨rstner, Angew. Chem. Int. Ed. Engl. 2000, 39, 3012.

115.A. Fu¨rstner and C. Mathes, Org. Lett. 2001, 3, 221.

116.H. Kwart and A. A. Kahn, J. Am. Chem. Soc. 1967, 89, 1951.

117.Y. Yamada, T. Yamamoto, and M. Okawara, Chem. Lett. 1975, 361.

118.P. Mu¨ller, in Advances in Catalytic Processes, Vol. 2, M. P. Doyle, Ed., JAI Press, Greenwich, CT, 1997.

592SYNTHETIC CARBENE AND NITRENE CHEMISTRY

119.J. A. Halfen, J. K. Hallman, J. A. Schultz, and J. P. Emerson, Organometal. 1999, 18, 5435.

120.D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Anderson, and D. M. Barnes, J. Am. Chem. Soc. 1993, 115, 5328.

121.D. B. Llewellyn, D. Adamson, and B. A. Arndtsen, Org. Lett. 2000, 2, 4165.

122.(a) K. Li, K. R. Conser, and E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5889. (b) Z. Li,

R. W. Quan, and E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5889. (c) For biaryl Schiff bases: K. M. Gillespie, C. J. Sanders, P. O’Shaugnessy, I. Westmoreland, C. P. Thickitt, and P. Scott, J. Org. Chem. 2002, 67, 3450.

123.(a) P. Mu¨ller, C. Baud, Y. Jacquier, M. Moran, and I. Na¨geli, J. Phys. Org. Chem. 1996, 9, 341. (b) P. Mu¨ller, C. Baud, and I. Na¨geli, J. Phys. Org. Chem. 1998, 11, 597.

124.B. M. Chandra, R. Vyas, and A. V. Bedekar, J. Org. Chem. 2001, 66, 30.

125.P. Dauban, L. Saniere, A. Tarradu, and R. H. Dodd, J. Am. Chem. Soc. 2001, 2, 4165.

126.P. Brandt, M. J. So¨dergren, P. G. Andersson, and P. Norrby, J. Am. Chem. Soc. 2000, 122, 8013. See also: M. M. Dı´az-Requejo, P. J. Pe´rez, M. Brookhart, and J. L. Templeton,

Organometal. 1997, 16, 4399.

127.(a) P. Mu¨ller, C. Baud, and Y. Jacquier, Can. J. Chem. 1998, 76, 738. (b) S.-M. Au, J.-S. Huang, W.-Y. Yu, W.-H. Fung, and C.-M. Che, J. Am. Chem. Soc. 1999, 121, 9120.

128.X.-Q. Yu, J.-S. Huang, X.-G. Zhou, and C.-M. Che, Org. Lett. 2000, 2, 2233.

129.C. G. Espino, P. M. Wehn, J. Chow, and J. Du Bois, J. Am Chem. Soc. 2001, 123, 6935.

130.C. G. Espino, and J. Du Bois, Angew. Chem. Int. Ed. Engl. 2001, 40, 598.

131.A. Padwa and T. Stengel, Org. Lett. 2002, 4, 2137.

132.M. A. Aubart and R. G. Bergman, Organometal. 1999, 18, 811.

133.W.-D. Wang and J. H. Espenson, Organometal. 1999, 18, 5170.

CHAPTER 13

Nitrenium Ions

DANIEL E. FALVEY

Department of Chemistry and Biochemistry, University of Maryland, College Park, MD

1.

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

594

 

1.1. Definitions of Nitrenium Ions and Various Subclasses . . . . . . . . . . . . . . .

594

 

1.2. Scope of This Chapter and Previous Reviews . . . . . . . . . . . . . . . . . . . . .

597

 

1.3. Relevance of Nitrenium Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

597

 

1.4. Nitrenium Ion History: Highlights of Pre-1984 Studies . . . . . . . . . . . . . .

599

2.

Theoretical Treatments of Nitrenium Ions . . . . . . . . . . . . . . . . . . . . . . . . . . .

603

 

2.1. Parent, Alkyl-, and Halonitrenium Ions . . . . . . . . . . . . . . . . . . . . . . . . .

603

 

2.2. Aryland Heteroarylnitrenium Ions. . . . . . . . . . . . . . . . . . . . . . . . . . . .

606

3.

Methods of Nitrenium Ion Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

611

 

3.1. Thermal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

611

 

3.2. Photochemical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

614

 

3.3. Electrochemical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

618

4.

Reactions of Nitrenium Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

619

 

4.1. Singlet-State Rearrangement and Elimination Reactions . . . . . . . . . . . . .

619

 

4.2. Singlet-State Reactions with n Nucleophiles. . . . . . . . . . . . . . . . . . . . . .

621

 

4.3. Singlet-State Reactions with p Nucleophiles. . . . . . . . . . . . . . . . . . . . . .

624

 

4.4. Singlet-State Reactions with Hydride Donors . . . . . . . . . . . . . . . . . . . . .

628

 

4.5. Triplet-State Hydrogen Atom Transfer Reactions . . . . . . . . . . . . . . . . . .

629

 

4.6. Intersystem Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

631

5.

Spectroscopic and Kinetic Studies of Nitrenium Ions . . . . . . . . . . . . . . . . . . .

631

 

5.1. Brief Summary of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

631

 

5.2. Ultraviolet–Visible Spectra of Nitrenium Ions. . . . . . . . . . . . . . . . . . . . .

634

 

5.3. Infrared and Raman Spectra of Nitrenium Ions. . . . . . . . . . . . . . . . . . . .

636

 

5.4. Direct Detection of Intermediates in Nitrenium Ion Reactions . . . . . . . . .

638

6.

The Role of Arylnitrenium Ions in DNA Damaging Reactions. . . . . . . . . . . . .

640

7.

Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

644

Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

644

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

645

Reactive Intermediate Chemistry, edited by Robert A. Moss, Matthew S. Platz, and Maitland Jones, Jr. ISBN 0-471-23324-2 Copyright # 2004 John Wiley & Sons, Inc.

593

594 NITRENIUM IONS

1. INTRODUCTION

1.1. Definitions of Nitrenium Ions and Various Subclasses

A nitrenium ion is a molecular species characterized by a nitrogen atom that bears a formal positive charge and two covalent bonds. Thus the simplest example of this class of reactive intermediates is NHþ2 , which is also known as the imidogen ion. The higher homologues occur when one or both of the hydrogen atoms is substituted with larger groups, including alkyl, aryl, halides, and so on. Nitrenium ions are similar to nitrenes in that both classes possess a nitrogen atom with only six valence electrons (Fig. 13.1). However, they are distinct in that nitrenium ions are dicoordinate and cationic, whereas nitrenes are monocoordinate and neutral. Nitrenium ions are similar to carbenium ions in that they are cationic, but of course, have nitrogen, rather than carbon as the atom formally bearing the positive charge. Nitrenium ions are related to carbenes in that both species have a dicoordinate central atom, which in turn has two nonbonding orbitals and two nonbonding electrons. Indeed, like carbenes, nitrenium ions can exist in either ground-state singlet or triplet states, depending on the R and R0 groups, Structures of several specific nitrenium ions are provided in Figure 13.2, including the parent system 1, methylnitrenium ion 2, phenylnitrenium ion 3, 4-methoxyphenylnitrenium ion 4, N-acetyl- N-(2-fluorenyl)nitrenium ion 5, 4-(40-N,N-dimethylaminophenyl)phenylnitrenium ion 6, and 1,3-dimethyltriazolium ion 7.

This simple definition of nitrenium ion may seem reasonably straightforward. However, a detailed consideration reveals that there is some ambiguity in any definition. In fact, most nitrenium ions exhibit significant delocalization of the positive charge from nitrogen onto the ligands. This is especially true when the ligand is a p donor such as a benzene ring. However, calculations on singlet alkylnitrenium ions show that there is substantial hyperconjugation from the vicinal sigma bonds. Consider the series of ions depicted in Figure 13.2. While it is clear that NHþ2 , by anyone’s definition, can safely be regarded as a nitrenium ion, the case becomes increasingly unclear as one moves from left to right in the figure. Phenylnitrenium ion 3 is, of course, a very short lived and highly reactive intermediate. However, density functional theory (DFT) calculations [which have been validated by timeresolved infrared (IR) measurements on some substituted analogues] show that this species experiences considerable charge delocalization into the phenyl ring as well as bond order alternation that would be expected for an imino-cyclohexadienyl cation.1 The arylnitrenium ion 6 can be regarded as an N-methylated derivative

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R'

 

N

R'

 

C

 

R

R'

 

C

 

R

R'

 

N

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R''

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carbenium ion

Carbene

Nitrenium ion

Nitrene

Figure 13.1. Nitrenium ions and related species.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 595

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

N

 

H

Me

 

N

 

H

 

 

 

N

 

H MeO

 

 

 

N

 

 

H

 

 

 

 

 

 

1

 

 

 

 

2

 

 

3

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

Me

 

H

 

 

 

 

H

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

O

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

Me

N

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

Me

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

5

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

Figure 13.2. Examples of nitrenium ions.

of benzidine diimine. Yet Dicks et al.2 found that it reacts in the same way as 3–5, albeit with highly attenuated rate constants. The triazolium ions (e.g., 7) have been known for decades to be stable isolable salts.3 Yet Boche and co-workers4,5 argued that these species are nitrenium ions by virtue of the resonance form that assigns a positive charge to the central nitrogen. In fact, Boche’s study of these species was undoubtedly inspired by Wanzlik and Schikora6 and the work of Arduengo et al.7 on stable carbenes possessing analogous structures. However, many would argue that these ions are not nitrenium ions. They are readily isolable and are no more reactive toward nucleophiles than are pyridinium ions or any other quaternary nitrogenous heterocycle. Furthermore, they are ground-state singlets with very high energy triplet states.

This raises the question: When is a nitrenium ion not a nitrenium ion? Or to state it another way: When is the degree of charge delocalization so great that the species in question is no longer suitably considered a nitrenium ion. In principle, one could propose either a structureor reactivity-based definition of nitrenium ion. As seen in the discussion above any definition based on qualitative valence bond structures faces the problem of judging which canonical structure is ‘‘better.’’ One might do better with ab initio quantum chemistry calculations. However, the parameters that can recovered from such calculations (bond angles, charge distributions, orbital energies, etc.) are likely to vary in a more or less continuous fashion throughout the series. Thus a quantitative structural definition would have to rely on an arbitrary, and ultimately subjective definition of charge distribution or other structural features.

596 NITRENIUM IONS

Likewise any reactivity-based definition would require some arbitrary choice of reaction rate. Which reaction would be used? What minimal rate would be required? What conditions of temperature, solvent, or acidity would be chosen for the definition? As a practical matter, such a definition could not be applied to any unknown species for the simple reason that reaction rates are, at this point in time, notoriously difficult to predict from first principles.

For these reasons, a permissive definition of nitrenium ions is chosen. A nitrenium is any species that can, through valence bond representations, be depicted as having a dicoordinate positively charged nitrogen. Such a definition has the advantage of being readily applied to any species for which a valence bond representation can be depicted. On the other hand, such a definition does encompass a number of species with rather different properties.

Nitrenium ions can be divided into several subclasses on the basis of their ligands. Of these, the most widely studied group is the arylnitrenium ions, which are characterized by having an aromatic ring attached to the nitrogen. Likewise alkyl-, halo-, and heteroaryl nitrenium ions are those species having, respectively, alkyl groups, halogens, and heteroaromatic rings attached to the nitrogen.

There is an additional subclass of nitrenium ions where the positively charged nitrogen atom is doubly bound to one ligand (8, Fig. 13.3). These can be regarded as nitrenium analogues of vinylidene carbenes. By analogy, such species are proposed to be named vinylidene nitrenium ions. Very little is known about such species. Vinylidene nitrenium ions would be formed in the Beckman rearrangement were it to occur in a stepwise fashion. The a-cyanocarbeniun ions could also be considered members of this family on the basis of resonance structure 9, shown in Figure 13.3. In fact, such species have been characterized by nuclear magnetic resonance spectroscopy (NMR) in superacid media.

Because singlet nitrenium ions bear a formal nonbonding electron pair, they can be regarded as Lewis bases. In principle, it should be possible to derive a dicationic species through protonation (10, Fig. 13.4) of a nitrenium ion, or by removal of two

R'

N

R C N

8

9

Figure 13.3. Vinylidene nitrenium ions.

H+

 

 

 

 

 

 

 

 

 

 

2+

 

 

R'

 

N

 

R

 

 

 

 

 

 

 

 

R'

 

N

 

R

 

 

 

 

H

10

Figure 13.4. Nitrenium dications.

Соседние файлы в предмете Химия