
Reactive Intermediate Chemistry
.pdfREFERENCES 587
SUGGESTED READING
H. M. L. Davies and E. G. Antoulinakis, ‘‘Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations,’’ Org. React. (N. Y.) 2001, 57, 1.
M. P. Doyle and D. C. Forbes, ‘‘Recent Advances in Asymmetric Catalytic Metal Carbene Transformations,’’ Chem. Rev. 1998, 98, 911.
A. Fu¨rstner, ‘‘Olefin Metathesis and Beyond,’’ Angew. Chem. Int. Ed. Engl. 2000, 39, 3012.
D. M. Hodgson, F. Y. T. M. Pierand, and P. A. Stupple, ‘‘Catalytic Enantioselective Rearrangements and Cycloadditions Involving Ylides from Diazo Compounds,’’ Chem. Soc. Rev. 2001, 30, 50.
H.Lebel, J.-F. Marcoux, C. Molinaro, and A. B. Charette, ‘‘Stereoselective Cyclopropanation Reactions,’’ Chem. Rev. 2003, 103, 977.
P, Mu¨ller, ‘‘Transition Metal-Catalyzed Nitrene Transfer: Aziridination and Insertion,’’ in Advances in Catalytic Processes, Vol. 2, M. P. Doyle, Ed., JAI Press, Greenwich, CT,
pp. 113 f .
T.M. Trnka and R. H. Grubbs, ‘‘The Development of L2X2Ru CHR Olefin Metathesis Catalysts: An Organometallic Success Story,’’ Acc. Chem. Res. 2001, 34, 18.
W.D. Wulff, ‘‘Transition Metal Carbene Complexes: Alkyne and Vinyl Ketene Chemistry,’’ in
Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, NY, 1995, Chapter 5.3, pp. 469 f .
REFERENCES
1.J. Hine, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York, 1962.
2.J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures; McGraw-Hill, New York, 1968.
3.P. Yates, J. Am. Chem. Soc. 1952, 74, 5376.
4.E. O. Fischer and K. H. Do¨tz, Chem. Ber. 1970, 103, 1273.
5.K. H. Do¨tz, Angew. Chem., Int. Ed. Engl. 1984, 23, 587. K. H. Do¨tz, Transition Metal Carbene Complexes; VCH Publishing, New York, 1983.
6.M. P. Doyle, M. A. McKervey, and T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, John Wiley & Sons, Inc., New York, 1998.
7.W. D. Wulff, in Advances in Metal-Organic Chemistry, Vol. 1, L. Liebeskind, Ed., JAI Press, Greenwich, CT, 1989.
8.(a) R. H. Crabtree, The Organic Chemistry of the Transition Metals, 3rd ed., John Wiley
& Sons, Inc., New York, 2000. (b) J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, 2nd ed., University Science Books, Herndon, VA, 1987.
9.M. Brookhart and W. B. Studabaker, Chem. Rev. 1987, 87, 411.
10.C. P. Casey, S. W. Polichnowski, A. J. Shustermann, and C. R. Jones, J. Am. Chem. Soc. 1979, 101, 7282.
11.(a) R. R. Schrock and G. W. Parshall, Chem. Rev. 1976, 76, 243. (b) P. J. Davidson, M. F. Lappert, and R. Pearce, Chem. Rev. 1976, 76, 219. (c) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18. (d) H. Eleuterio, CHEMTECH 1991, 92. (e) F. Z. Dorwald and
588SYNTHETIC CARBENE AND NITRENE CHEMISTRY
R.H. Grubbs, Metal Carbenes in Organic Synthesis, VCH Publishing, New York,
1999.
12.R. R. Shrock, Acc. Chem. Res. 1990, 23, 158.
13.S. T. Nguyen, L. K. Johnson, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc. 1992, 114, 3974.
14.(a) M. Scholl, T. M. Trnka, J. P. Morgan, and R. H. Grubbs, Tetrahedron Lett. 1999, 40, 2247. (b) J. Huang, E. D. Stevens, S. P. Nolan, and J. L. Peterson, J. Am. Chem. Soc. 1999, 121, 2674.
15.(a) M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, Org. Lett. 1999, 1, 953. (b) L. Jafarpour, A. C. Hillier, and S. P. Nolan, Organometal. 2002, 21, 442.
16.C. P. Casey and M. C. Cesa, Organometal. 1982, 1, 87.
17.G. Stork and J. Ficini, J. Am. Chem. Soc. 1961, 83, 4678.
18.S. D. Burke and P. A. Grieco, Org. React. (N. Y.), 1979, 26, 361.
19.K. Mori, M. Ohki, A. Kobayashi, and M. Matsui, Tetrahedron, 1970, 26, 2815.
20.F. Medina and A. Majarrez, Tetrahedron 1964, 20, 1807.
21.D. H. Rogers, E. C. Yi, and C. D. Poulter, J. Org. Chem. 1995, 60, 941.
22.D. A. Evans, K. A. Woerpel, M. M. Hinman, and M. M. Faul, J. Am. Chem. Soc. 1991, 113, 726.
23.(a) H. M. L. Davies, P. R. Bruzinski, D. H. Lake, N. Kong, and M. J. Fall, J. Am. Chem. Soc. 1996, 118, 6897. (b) M. A. McKervey, and T. Ye, J. Chem. Soc., Chem. Commun.
1992, 823.
24.(a) M. P. Doyle, R. J. Pieters, S. F. Martin, R. E. Austin, C. J. Oalmann, and P. J. Mu¨ller,
J.Am. Chem. Soc. 1991, 113, 1423. (b) M. P. Doyle, W. R. Winchester, M. N.
Protopopova, A. P. Kazula, and L. J. Westrum, Org. Syn. 1996, 73, 13. (c) For applications with polymer supported catalyst: M. P. Doyle, D. J. Timmons, J. S. Tumonis, H.-M. Gau, and E. C. Blossey Organometal. 2002, 21, 1747.
25.T. Uchida, R. Irie, and T. Katsuki, Tetrahedron 2000, 56, 3501.
26.S. Kitagaki, M. Anada, O. Kataoka, K. Matsuno, C. Umeda, N. Watanabe, and S.-i. Hashimoto, J. Am. Chem. Soc. 1999, 121, 1417.
27.T. Ikeno, M. Sato, H. Sekino, A. Nishizaka, and T. Yamada, Bull. Chem. Soc. Jpn. 2001, 74, 2139.
28.M. P. Doyle, R. E. Austin, A. S. Bailey, M. P. Dwyer, A. B. Dyatkin, A. V. Kalinin, M. M. Y. Kwan, S. Liras, C. J. Oalmann, R. J. Pieters, M. N. Protopopova, C. E. Raab, G. H. P. Roos, Q.-L. Zhou, and S. F. Martin, J. Am. Chem. Soc. 1995, 117, 5763.
29.H. M. L. Davies, T. Hansen, and M. R. Churchill, J. Am. Chem. Soc. 2000, 122, 3063.
30.M. P. Doyle, W. Hu, and D. J. Timmons, Org. Lett. 2001, 3, 933.
31.H. M. L. Davies and E. G. Antoulinakis, Org. React. (N. Y.) 2001, 57, 1.
32.M. P. Doyle and D. C. Forbes, Chem. Rev. 1998, 98, 911.
33.M. P. Doyle, in Catalytic Asymmetric Synthesis, 2nd ed., I. Ojima, Ed., Wiley-VCH, New York, 2000.
34.P. Mu¨ller, and C. Bole´a, Helv. Chim. Acta 2001, 84, 1093.
35.W. D. Wulff, in Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 5.3.
36.L. S. Hegedus, in Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 5.4.
REFERENCES 589
37.J. P. A. Harrity, W. J. Kerr, and D. Middlemiss, Tetrahedron 1993, 49, 5565.
38.B. B. Snider, Chem. Rev. 1998, 88, 793.
39.A. Yamashita, Tetrahedron Lett. 1986, 27, 5915.
40.G. W. Parshall and S. D. Ittel, Homogeneous Catalysis, 2nd ed., John Wiley & Sons, Inc., New York, 1992.
41.J. S. Moore, in Comprehensive Organometallic Chemistry II, Vol. 12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 12.2.
42.R. H. Grubbs and W. Tumas, Science 1989, 243, 907.
43.(a) M. R. Buchmeiser, Chem Rev. 2000, 100, 1565. (b) U. H. F. Bunz, Acc. Chem. Res. 2001, 34, 998.
44.K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization; Academic Press, London, 1997.
45.(a) M. Schuster and S. Blechert, Angew. Chem., Int. Ed. Engl. 1997, 36, 2036. (b) R. H. Grubbs and S. Chang, Tetrahedron 1998, 54, 4413. (c) A. Fu¨rstner, Angew. Chem., Int. Ed. Engl. 2000, 39, 3012.
46.(a) P. Schwab, M. P. France, J. W. Ziller, and R. H. Grubbs, Angew Chem., Int. Ed. Engl. 1995, 34, 2039. (b) For applications with a polymer-supported catalyst: L. Jafarpour and
S.P. Nolan, Org. Lett. 2000, 2, 4075.
47.A. Fu¨rstner, O. R. Thiel, and L. Ackerman, Org. Lett. 2001, 3, 449.
48.A. K. Chatterjee, J. P. Morgan, M. Scholl, and R. H. Grubbs, J. Am. Chem. Soc. 2000, 122, 3783.
49.J. R. Stille, in Comprehensive Organometallic Chemistry II, Vol.12, L. S. Hegedus, Ed., Pergamon, Tarrytown, N.Y., 1995, Chapter 5.5.
50.(a) W.-H. Fang, D. L. Phillips, D. Wang, and Y.-L. Li, J. Org. Chem. 2002, 67, 154.
(b) E. Nakamura, A. Hirai, and M. Nakamura, J. Am. Chem. Soc. 1998, 120, 5844.
51.F. N. Tebbe, G. W. Parhsall, and G. S. Reddy, J. Am. Chem. Soc. 1978, 100, 3611.
52.K. C. Nicolaou, M. D. D. Postema, and C. F. Claiborne, J. Am. Chem. Soc. 1996, 118, 1565.
53.D. A. Straus and R. H. Grubbs, Organometal. 1982, 1, 1658.
54.A. B. Charette, in Organozinc Reagents: A Practical Approach, P. Knochel, and P. Jones, Eds., Oxford University Press, Oxford, 1999.
55.S. E. Denmark, J. P. Edwards, and S. R. Wilson, J. Am. Chem. Soc. 1992, 114, 2592.
56.A. H. Hoveyda, D. A. Evans, and G. C. Fu, Chem. Rev. 1993, 93, 1307.
57.D. Cheng, T. Kreethadumrongdat, and T. Cohen, Org. Lett. 2001, 3, 2121. The first report on the directing ability of hydroxyl groups was S. Winstein, J. Sonnenberg, and
L.deVries, J. Am. Chem. Soc. 1959, 81, 6523.
58.A. B. Charette, A. Beauchemin, and S. Francoeur, J. Am. Chem. Soc. 2001, 123, 8139.
59.A. B. Charette, A. Gagnon, and J.-F. Fournier, J. Am. Chem. Soc. 2002, 124, 386.
60.A. B. Charette, C. Molinaro, and C. Brochu, J. Am. Chem. Soc. 2001, 123, 12168.
61.M. Regitz and G. Maas, Diazo Compounds: Properties and Syntheses, Academic Press, New York, 1986.
62.T. Fukuda and T. Katsuki, Tetrahedron 1997, 53, 7201.
63.T. Niimi, T. Uchida, R. Irie, and T. Katsuki, Tetrahedron Lett. 2000, 41, 3647.
590SYNTHETIC CARBENE AND NITRENE CHEMISTRY
64.(a) M. P. Doyle and W. Hu, J. Org. Chem. 2000, 65, 8839. (b) M. P. Doyle, W. Hu, B. Chapman, A. B. Marnett, C. S. Peterson, J. P. Vitale, and S. A. Stanley, J. Am. Chem. Soc. 2000, 122, 5718.
65.E. J. Corey and T. G. Grant, Tetrahedron Lett. 1994, 35, 5373.
66.M. P. Doyle and W. Hu, Adv. Synth. Catal. 2001, 343, 299.
67.T. G. Grant, M. C. Noe, and E. J. Corey, Tetrahedron Lett. 1995, 36, 8745.
68.(a) M. P. Doyle, M. N. Protopopova, P. Mu¨ller, D. Ene, and E. A. Shapiro, J. Am. Chem. Soc. 1994, 116, 8492. (b) P. Mu¨ller and H. Imogaı¨, Tetrahedron: Asymmetry 1998, 9, 4419.
69.M. P. Doyle and W. Hu, Synlett 2001, 1364.
70.M. P. Doyle, C. S. Peterson, M. N. Protopopova, A. B. Marnett, D. L. Parker, Jr.,
D.G. Ene, and V. Lynch, J. Am. Chem. Soc. 1997, 119, 8826.
71.M. P. Doyle, D. G. Ene, C. S. Peterson, and V. Lynch, Angew. Chem. Int. Ed. Engl. 1999, 38, 700.
72.M. P. Doyle and M. N. Protopopova, Tetrahedron 1998, 54, 7919.
73.(a) R. Tokunoh, B. Fa¨hndrich, and A. Pfaltz, Synlett 1995, 491. (b) M. Barberis, J. PerezPrieto, S.-E. Stiriba, and P. Lahuerta, Org. Lett. 2001, 3, 3317, 4325.
74.D. F. Taber, in Houben-Weyl: Methods of Organic Chemistry, Vol. E2la, G. Helmchen, Ed., Georg Thieme Verlag, Stuttgart, Germany, 1995, Chapter 1.2.
75.D. F. Taber and E. H. Petty, J. Org. Chem. 1982, 47, 4808.
76.M. P. Doyle, M. S. Shanklin, S.-M. Oon, H.-Q. Pho, F. R. van der Heide, and W. R. Veal,
J.Org. Chem. 1988, 53, 3384.
77.A. Padwa, D. J. Austin, A. T. Price, M. A. Semonis, M. P. Doyle, M. N. Protopopova,
W.R. Winchester, and A. Tran, J. Am. Chem. Soc. 1993, 115, 8669.
78.D. F. Taber and R. E. Ruckle, Jr., J. Am. Chem. Soc. 1986, 108, 7686.
79.P. Wong and J. Adams, J. Am. Chem. Soc. 1994, 116, 3296.
80.E. Nakamura, N. Yoshikai, and M. Yamanaka, J. Am. Chem. Soc. 2002, 124, 7181.
81.M. P. Doyle, L. J. Westram, W. N. E. Wolthuis, M. M. See, W. P. Boone, V. Bagheri, and
M.M. Pearson, J. Am. Chem. Soc. 1993, 115, 958.
82.H. Saito, H. Oishi, S. Kitagaki, S. Nakamura, M. Anada, and S. Hashimoto, Org. Lett. 2002, 4, 3887.
83.M. P. Doyle, Q.-L. Zhou, C. E. Raab, G. H. P. Roos, S. H. Simonsen, and V. Lynch, Inorg. Chem. 1996, 35, 6064.
84.J. W. Bode, M. P. Doyle, M. N. Protopopova, and Q.-L. Zhou, J. Org. Chem. 1996, 61, 9146.
85.M. P. Doyle, J. S. Tedrow, A. B. Dyatkin, C. J. Spaans, and D. G. Ene, J. Org. Chem. 1999, 64, 8907.
86.M. P. Doyle and W. Hu. Chirality 2002, 14, 169.
87.H. M. L. Davies and E. G. Antoulinakis, J. Organometal. Chem. 2001, 617, 47.
88.H. M. L. Davies and P. Ren, J. Am. Chem. Soc. 2001, 123, 2070.
89.H. M. L. Davies, D. G. Stafford, and T. Hansen, Org. Lett. 1999, 1, 233.
90.(a) A. Padwa and S. F. Hornbuckle, Chem. Rev. 1991, 91, 263. (b) D. M. Hodgson, F. Y. T.
M.Pierand, and P. A. Stupple, Chem. Soc. Rev. 2001, 30, 50.
REFERENCES 591
91.M. P. Doyle, D. C. Forbes, M. M. Vasbinder, and C. S. Peterson, J. Am. Chem. Soc. 1998, 120, 7653.
92.A. Padwa, J. P. Snyder, E. A. Curtis, S. M. Sheehan, K. J. Worsencroft, and C. O. Kappe,
J.Am. Chem. Soc. 2000, 122, 8155.
93.N. Watanabe, Y. Ohtake, S.-i. Hashimoto, M. Shiro, and S. Ikegami, Tetrahedron Lett. 1995, 36, 1491.
94.M. Kennedy, M. A. McKervey, A. R. Maguire, S. M. Tuladhar, and M. F. Twohig,
J.Chem. Soc., Perkin Trans 1 1990, 1047.
95.T. N. Salzmann, R. W. Ratcliffe, B. G. Christensen, and F. A. Bouffard, J. Am. Chem. Soc. 1980, 102, 6161.
96.R. Connell, F. Scavo, P. Helquist, and B. Akermark, Tetrahedron Lett. 1986, 27, 5559.
97.(a) K. Ruck-Braum, M. Mikulas, and P. Amrhein, Synthesis 1999, 727. (b) W. Petz, IronCarbene Complexes, Springer-Verlag: Berlin, 1993.
98.J. Barluenga, S. Martinez, A. L. Sua´rez-Sobrino, and M. Toma´s, J. Am. Chem. Soc. 2002, 124, 5948.
99.S. Ishii, S. Zhao, G. Mehta, C. J. Knors, and P. Helquist, J. Org. Chem. 2001, 66, 3449.
100.J. W. Herndon and H. Wang, J. Org. Chem. 1998, 63, 4564.
101.J. Barluenga, M. Toma´s, E. Rubio, J. A. Lo´pez-Pelegrin, S. Garcia-Granda, and
P.Pertierra, J. Am. Chem. Soc. 1996, 118, 695.
102.H. Wang and W. D. Wulff, J. Am. Chem. Soc. 1998, 120, 10573.
103.H. Kagoshima, T. Okamura, and T. Akiyama, J. Am. Chem. Soc. 1998, 121, 4516.
104.J. D. White, P. Hrnciar, and F. T. Yokochi, J. Am. Chem. Soc. 1998, 120, 7359.
105.W. P. D. Goldring and L. Weiler, Org. Lett. 1999, 1, 1471.
106.D. J. Dixon, A. C. Foster, and S. V. Ley, Org. Lett. 2000, 2, 123.
107.(a) C. W. Lee, T.-L. Choi, and R. H. Grubbs, J. Am. Chem. Soc. 2002, 124, 3224. (b) H. Biera¨ugel, T. P. Jansen, H. E. Shoemaker, H. Hiemstra, J. H. van Maarseveen, Org. Lett. 2002, 4, 2673. (c) T.-L. Chio, C. W. Lee, A. K. Chatterjee, and R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 10417.
108.C. W. Lee and R. H. Grubbs, Org. Lett. 2000, 2, 2145.
109.T. J. Seiders, D. W. Ward, and R. H. Grubbs, Org. Lett. 2001, 3, 3225.
110.R. R. Schrock, J. Y. Jamieson, S. J. Dolman, S. A. Miller, P. J. Bonitatebus, Jr., and A. H. Hoveyda, Organometal. 2002, 21, 409.
111.X. Teng, D. R. Cefalo, R. R. Schrock, and A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 10779.
112.D. S. La, E. S. Sattely, J. G. Ford, R. R. Schrock, and A. H. Hoveyda, J. Am. Chem. Soc. 2001, 123, 7767.
113.M. P. Heck, C. Baylon, S. P. Molan, and C. Mioskowski, Org. Lett. 2001, 3, 1989.
114.A. Fu¨rstner, Angew. Chem. Int. Ed. Engl. 2000, 39, 3012.
115.A. Fu¨rstner and C. Mathes, Org. Lett. 2001, 3, 221.
116.H. Kwart and A. A. Kahn, J. Am. Chem. Soc. 1967, 89, 1951.
117.Y. Yamada, T. Yamamoto, and M. Okawara, Chem. Lett. 1975, 361.
118.P. Mu¨ller, in Advances in Catalytic Processes, Vol. 2, M. P. Doyle, Ed., JAI Press, Greenwich, CT, 1997.
592SYNTHETIC CARBENE AND NITRENE CHEMISTRY
119.J. A. Halfen, J. K. Hallman, J. A. Schultz, and J. P. Emerson, Organometal. 1999, 18, 5435.
120.D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Anderson, and D. M. Barnes, J. Am. Chem. Soc. 1993, 115, 5328.
121.D. B. Llewellyn, D. Adamson, and B. A. Arndtsen, Org. Lett. 2000, 2, 4165.
122.(a) K. Li, K. R. Conser, and E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5889. (b) Z. Li,
R. W. Quan, and E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5889. (c) For biaryl Schiff bases: K. M. Gillespie, C. J. Sanders, P. O’Shaugnessy, I. Westmoreland, C. P. Thickitt, and P. Scott, J. Org. Chem. 2002, 67, 3450.
123.(a) P. Mu¨ller, C. Baud, Y. Jacquier, M. Moran, and I. Na¨geli, J. Phys. Org. Chem. 1996, 9, 341. (b) P. Mu¨ller, C. Baud, and I. Na¨geli, J. Phys. Org. Chem. 1998, 11, 597.
124.B. M. Chandra, R. Vyas, and A. V. Bedekar, J. Org. Chem. 2001, 66, 30.
125.P. Dauban, L. Saniere, A. Tarradu, and R. H. Dodd, J. Am. Chem. Soc. 2001, 2, 4165.
126.P. Brandt, M. J. So¨dergren, P. G. Andersson, and P. Norrby, J. Am. Chem. Soc. 2000, 122, 8013. See also: M. M. Dı´az-Requejo, P. J. Pe´rez, M. Brookhart, and J. L. Templeton,
Organometal. 1997, 16, 4399.
127.(a) P. Mu¨ller, C. Baud, and Y. Jacquier, Can. J. Chem. 1998, 76, 738. (b) S.-M. Au, J.-S. Huang, W.-Y. Yu, W.-H. Fung, and C.-M. Che, J. Am. Chem. Soc. 1999, 121, 9120.
128.X.-Q. Yu, J.-S. Huang, X.-G. Zhou, and C.-M. Che, Org. Lett. 2000, 2, 2233.
129.C. G. Espino, P. M. Wehn, J. Chow, and J. Du Bois, J. Am Chem. Soc. 2001, 123, 6935.
130.C. G. Espino, and J. Du Bois, Angew. Chem. Int. Ed. Engl. 2001, 40, 598.
131.A. Padwa and T. Stengel, Org. Lett. 2002, 4, 2137.
132.M. A. Aubart and R. G. Bergman, Organometal. 1999, 18, 811.
133.W.-D. Wang and J. H. Espenson, Organometal. 1999, 18, 5170.



|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
INTRODUCTION 595 |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
|
N |
|
H |
Me |
|
N |
|
H |
|
|
|
N |
|
H MeO |
|
|
|
N |
|
|
H |
|||||||||||||||||
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||
1 |
|
|
|
|
2 |
|
|
3 |
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Me |
||||||||
|
|
|
|
|
|
|
Me |
|
H |
|
|
|
|
H |
|
|
|
|
|
|
N |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
||||||||||||||||||||
O |
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|
|
N |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Me |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Me |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
Me |
N |
|
|
|
|
|
|
|
N |
||||||||||
|
|
|
|
|
|
|
|
|
Me |
Me |
|
|
|
|
Me |
|
|
|
N |
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Me |
||||||||
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
Figure 13.2. Examples of nitrenium ions.
of benzidine diimine. Yet Dicks et al.2 found that it reacts in the same way as 3–5, albeit with highly attenuated rate constants. The triazolium ions (e.g., 7) have been known for decades to be stable isolable salts.3 Yet Boche and co-workers4,5 argued that these species are nitrenium ions by virtue of the resonance form that assigns a positive charge to the central nitrogen. In fact, Boche’s study of these species was undoubtedly inspired by Wanzlik and Schikora6 and the work of Arduengo et al.7 on stable carbenes possessing analogous structures. However, many would argue that these ions are not nitrenium ions. They are readily isolable and are no more reactive toward nucleophiles than are pyridinium ions or any other quaternary nitrogenous heterocycle. Furthermore, they are ground-state singlets with very high energy triplet states.
This raises the question: When is a nitrenium ion not a nitrenium ion? Or to state it another way: When is the degree of charge delocalization so great that the species in question is no longer suitably considered a nitrenium ion. In principle, one could propose either a structureor reactivity-based definition of nitrenium ion. As seen in the discussion above any definition based on qualitative valence bond structures faces the problem of judging which canonical structure is ‘‘better.’’ One might do better with ab initio quantum chemistry calculations. However, the parameters that can recovered from such calculations (bond angles, charge distributions, orbital energies, etc.) are likely to vary in a more or less continuous fashion throughout the series. Thus a quantitative structural definition would have to rely on an arbitrary, and ultimately subjective definition of charge distribution or other structural features.
