Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

SYNTHETIC ADVANTAGES OF METAL CARBENES

O

O

 

H COOMe

 

 

 

N

 

 

4Rh2

OH

 

 

Ph

N

 

 

 

O

O

Rh2(4S-MPPIM)4 (29)

 

 

HO

O

 

 

O

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-deoxyxylolactone (31)

Ph

 

 

COOMe

 

 

 

OTIPS

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

N2

 

 

 

 

 

 

 

 

 

 

 

(TIPS=

 

 

 

 

 

 

i-Pr3Si)

 

 

 

 

COOMe

+ Cl

 

 

 

N2

12

 

 

 

 

 

 

 

 

 

 

 

 

 

60%

 

 

 

 

 

Cl

 

 

OH

(−)-Enterolactone (30)

 

 

Cl

H3N+

H

COOH

Cl-

 

(R)-(−)Baclofen (32)

 

 

OTIPS

12

 

Ph

 

 

H

Me3C

 

-30 °C

COOMe

90%

 

96% ee (major)

 

 

dr = 70:30

COOMe

Sertraline

(26)

Cl

Cl

99%ee

577

ð32Þ

ð33Þ

most unusual rearrangement must occur in the course of Eq. 33. The relative rates of insertion using methyl phenyldiazoacetate with catalysis by 12 (Scheme 12.9) suggest significant charge separation in the transition state;88 for comparison, addition to styrene had a relative rate of 24,000.

H

H

BOC

 

 

 

 

H

Relative rates

 

N H

O

H

 

 

 

 

 

 

Ph2t-BuSi

 

H

 

 

for insertion

0.7

1700

 

 

 

 

 

 

 

 

 

 

1

2700

24,000

28,000

BOC = benzyloxycarbonyl

 

 

 

 

 

 

Scheme 12.9

578 SYNTHETIC CARBENE AND NITRENE CHEMISTRY

3.1.3. Ylide Formation and Reactions. As electrophiles, metal carbene intermediates in catalytic reactions will capture Lewis bases to form ylide intermediates that are themselves subject to a variety of transformations (e.g., Eqs. 10, 34, 35).90–92 Alternative base-promoted methodologies do not have the generality afforded by these catalytic methods. In the [2,3]-sigmatropic rearrangement depicted in Eq. 3491 the transition metal catalysis is obviously associated with the ylide (34) in the product forming step, and this was a surprise when first reported. However, this is not the case with all oxygen-centered ylides, and rarely with nitrogen or sulfur ylides. The trapping of carbonyl ylides (e.g., 35) by dipolarophiles such as DMAD (MeOOCC CCOOMe) provides versatility to the overall transformation, and high enantioselectivity has been achieved in one case (Eq. 9).26 Although catalytic entry into ylides has been widely investigated and is known to be highly versatile for synthesis,90 stereoselectivity in ylide transformations remains a significant challenge.

[2,3]-sigmatropic rearrangement

Ph

OMe + N2CHCOOEt

catalyst

CH2Cl2

 

 

 

COOMe

Rh2(OAc)4

 

N

 

 

 

4Rh2 Rh2(4S-MEOX)4

 

 

 

 

O

 

 

 

 

Rh2(4R-MEOX)4

 

O

 

 

 

 

Ph COOEt + Ph COOEt

OMe

OMe

ð34Þ

erythro

threo

 

83

17

 

15 (94% ee)

85 (98% ee)

 

15 (94% ee)

85 (98% ee)

 

Rh2(4S-MEOX)4 (33)

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

+

COOMe

 

 

EtOOC O+

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

N

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rh2L4

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

 

 

34

 

 

 

 

 

 

 

 

Carbonyl ylide

 

 

O

O

 

 

 

 

 

 

MeOOC

O COOMe

Me

 

 

 

 

 

 

 

COOMe Rh2(OAc)4

formation−cyclo-

 

 

 

 

 

 

 

 

O

N

 

 

 

 

 

 

 

 

 

 

addition

 

 

 

 

 

 

 

 

 

 

 

 

DMAD

MeOOC N

 

Ph

 

 

 

N2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

Me

ð35Þ

3.1.4. Other Transformations. Transition metal catalysts also promote reac-

tions of diazocarbonyl compounds that are significantly different from standard addition, insertion, and ylide transformations (e.g., Eqs. 36–39).6,93–96 These demon-

strate the enormous versatility of diazo compounds as metal carbene precursors

SYNTHETIC ADVANTAGES OF METAL CARBENES

579

in organic synthesis. In most cases, the substrate to catalyst ratio is 100, but ratios up to 10,000 have been reported, so catalyst cost is not a major factor in potential pharmaceutical uses.

 

 

O

 

 

 

 

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NPhth

Aromatic

Ph2C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

COO 4Rh2

Substitution

 

 

 

CH2Cl2, -20

°

C

 

 

 

 

 

 

 

 

 

PhCH

 

 

 

Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

N2

86%

 

 

 

 

 

 

 

 

 

 

Et

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95% ee

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(36)

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð36Þ93

Aromatic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rh2(OAc)4

 

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cycloaddition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N2

 

CH2Cl2

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80%

 

 

MeO

 

ð37Þ94

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

HO

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO H

H

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N—H Insertion

Me

 

 

 

 

 

 

Rh2(OAc)4

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C6H6

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

N2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOPNB

 

 

 

 

 

 

 

COOPNB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(PNB = p-NO2C6H4CH2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thienamycin ð38Þ95

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(an antibiotic)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rh2(OAc)4

MeOOC

N

 

 

 

 

 

 

N

C(COOMe)

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96

Cycloaddition

 

 

 

PhC

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð39Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

99%

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Synthetic Versatility of Fischer Carbene Complexes

Stoichiometric metal carbene reagents undergo reactions that typify those of their catalytic counterparts,7,9,97 but it is often the appendages and carbon monoxide

ligands of the metal that provide the synthetic versatility of these reagents. Both cyclopropanation (Eq. 40)98 and carbon–hydrogen insertion (Eq. 41)99 are well

 

 

OMe

Me

 

Me

 

Me

 

Me

 

Cyclopropanation (CO)5Cr

 

+

 

 

MeCN

 

OMe

ð40Þ

 

 

 

 

 

 

 

 

 

Ph

 

 

 

80 °C

 

 

65%

Ph

 

580

SYNTHETIC CARBENE AND NITRENE CHEMISTRY

 

 

 

 

 

O H Fe(CO)2Cp

 

 

 

 

O H

+

 

 

 

 

 

 

 

 

 

 

Me3O+BF4

 

 

 

Fe(CO)2Cp

 

 

 

 

SPh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C—H Insertion

CH2Cl2

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

Ph

 

 

 

 

H

−MeSPh

 

 

 

 

 

H

 

 

 

 

 

(Cp = C5H5)

 

 

 

Reaction intermediate

ð41Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O H

 

 

 

 

 

 

90%

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

H

known but, as expected from relative metal carbene stabilities, cyclopropanation is sluggish with Fischer carbenes, and they do not undergo C H insertion. As indicated by Eq. 41, the nonheteroatom stabilized metal carbenes are sufficiently reactive to undergo C H insertion.

The major direction taken with Fischer carbenes, however, has been annulation reactions (e.g., Eqs. 11–13) rather than cyclopropanation and insertion. Here, the dissociation of carbon monoxide initiates the sequence of events that lead to product (e.g., Eq. 42).100 Alternatively, an unsaturated unit conjugated with the carbene

H

 

 

 

(CO)5Cr

 

OMe

 

 

H

 

 

84%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

(-CO)

 

 

O

Bu

 

 

 

O

 

Bu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CO)4Cr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu

 

 

 

 

 

Me

OMe

 

 

 

Me OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð42Þ

controls the reaction (e.g., Eq. 43).101 This is a mature area for synthesis and includes macrocyclization102 and [3þ2] cycloaddition.103

 

Ph

 

 

 

 

 

 

 

 

 

 

Ph

 

Ph

 

+

 

 

OMe

20

°C

(CO)5Cr

 

 

[4+3] Annulation

(CO5Cr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF

 

 

 

 

 

 

N

 

 

 

 

 

 

 

N

 

 

 

 

90%

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

n-Pr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n-Pr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð43Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n-Pr

SYNTHETIC ADVANTAGES OF METAL CARBENES

581

3.3. Synthetic Advantages of Ring-Closing Metathesis

Functional group tolerance and its suitability for ring formation of any practical size beyond four has made ring-closing metathesis (RCM) one of the most valuable synthetic methodologies now available. Examples include RCM directed toward the synthesis of natural products (37–39) as well as specific strategies for ring constructions based on RCM.104 Among the challenges that remain are stereoselectivity, and here use of the N-heterocyclic carbene-ligated ruthenium (7) shows considerable

 

 

 

 

 

O

 

 

O

Me

O

O

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HN

 

 

 

 

 

 

 

 

 

N

 

MOMO

O

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

O

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

 

 

(+)-aristraline105

38

 

motuporamines106

39

 

 

 

(+)-aspicilin107

 

 

 

 

 

 

promise (Eq. 44).108 Modest enantioselection has been achieved with use of 41 (Eq. 45),109 but much higher selectivities (up to 98% ee for 40)110 have been

O

catalyst

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 O 2

CH2Cl2

O

 

 

 

 

 

 

ð44Þ

 

 

 

7

40 min

(E/Z ) = 11.5

 

 

 

6

5 h

(E/Z ) = 4.5

O

41/NaI

O

ð45Þ

CH2Cl2

40: 85% ee

obtained with 42 and its biphenyl analogues (e.g., Eq. 46).111 Catalytic asymmetric ring-opening metathesis coupled with subsequent cross-metathesis has also been achieved in a clever transformation (Eq. 47)112 that takes advantage of the susceptibility of norbornene to ring opening.

582

SYNTHETIC CARBENE AND NITRENE CHEMISTRY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i-Pr

i-Pr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

Ph

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

N

 

 

 

 

 

 

 

 

i-Pr

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

Ar

 

 

 

Ar

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

Mo

 

Ru

 

 

 

 

 

 

 

 

 

 

 

O

Me

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

i-Pr

 

PCy3

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

41

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Ar = o-MeC6H4)

 

 

 

 

 

 

 

i-Pr

i-Pr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

 

 

 

 

 

 

TBSO

 

5 mol % 42

 

TBSO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 equiv THF

 

ð46Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C6H6, 4 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94%

 

 

 

 

96% ee

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TBS = tert-butyldimethysilyl

 

 

 

 

 

 

 

 

OTBS

 

 

 

 

 

 

 

Ph

OTBS

 

 

 

 

 

 

 

 

5 mol % 42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

ð47Þ

 

 

 

C6H6, 22 °C

 

H

H

 

 

 

 

 

 

 

 

up to 86% ee

New applications continue to demonstrate the enormous versatility of RCM for organic synthesis. Examples include triple ring closing (Eq. 48)113 and alkyne metathesis,114 an example being that of cross-metathesis that provides an efficient synthetic strategy for prostaglandin E2 (Eq. 49).115 Amines and alcohols deactivate metathesis catalysts, but their protection as ethers, esters, and amides allows them to be incorporated into the designated transformation.

 

 

5 mol % 6

 

 

 

 

 

 

 

 

O

 

 

 

 

O

 

 

ð48Þ

O

PhMe, 70 °C

 

O

O

 

 

 

O

75%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METAL NITRENES IN ORGANIC SYNTHESIS

583

O

 

 

 

 

 

 

 

 

 

 

OAc

 

 

 

O

 

 

 

 

COOMe

 

 

10 mol % 43

 

 

 

 

 

 

 

 

 

 

 

 

 

TBSO

 

 

 

 

 

 

 

 

 

 

CH2Cl2/PhMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

44%

 

TBSO

 

 

OAc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOMe

 

 

 

 

 

 

MeOOC

 

 

 

 

 

 

 

 

 

ð49Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PGE2 methyl ester

t-Bu

N 3Mo

43

4. METAL NITRENES IN ORGANIC SYNTHESIS

If metal carbene chemistry can be said to be mature, metal nitrene chemistry is in its infancy. Although the first report of a catalytic process used benzenesulfonyl azide,116 high temperatures were required, and no one has yet provided a synthetically viable method to use azides as sources of nitrenes. Instead, iminophenyliodinanes (44), formed from the corresponding sulfonamide by oxidation with diacetoxyiodobenzene, PhI(OAc)2,117 and chloramine-T or bromamine-T (45) are the standard precursors for nitrenes.

 

 

 

Me

 

 

SO2

 

X

RN

 

IPh

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

44

 

 

 

 

 

Na

 

45

 

 

 

(R = ArSO2)

 

(X = Cl, Br)

Catalytic methods are suitable for nitrene transfer,118 and many of those found to be effective for carbene transfer are also effective for these reactions. However, 5- to 10-times more catalyst is commonly required to take these reactions to completion, and catalysts that are sluggish in metal carbene reactions are unreactive in nitrene transfer reactions. An exception is the copper(II) complex of a 1,4,7-triaza- cyclononane for which aziridination of styrene occurred in high yield, even with 0.5 mol% of catalyst.119 Both addition and insertion reactions have been developed.

584 SYNTHETIC CARBENE AND NITRENE CHEMISTRY

However, comparable transformations to those of stable Fischer carbenes are not available.

Copper catalysts were the first to be employed, and with the bis(oxazoline)- ligated catalyst 46 enantioselectivites up to 97% have been achieved (e.g., Eq. 50).120 In contrast to metal carbene reactions using diazo compounds, a,b- unsaturated substrates undergo reaction with the nitrene intermediate. In one study, the

 

 

 

 

5 mol%

Ts

 

 

COOPh

46

 

 

 

+ TsN

 

IPh

 

 

 

 

 

 

N

 

 

 

 

 

 

 

Ph

 

C6H6

COOPh

ð50Þ

 

 

 

 

 

 

 

 

 

 

 

MS 4A

Ph

64%

 

induction of enantioselectivity is proposed to occur by ion pairing of the cationic copper catalyst (46) in a chiral pocket formed from the chiral borate formed with 1,10-bi-2-naphthol (BINOL).121 Chiral bis(salicylidene)ethylenediamine(salen) complexes (47) with CuOTf also gave high selectivities for aziridination.122 With

Me

Me

 

 

 

 

 

O

 

O

H

H

 

 

 

 

Cl

 

N

N

 

Cl

 

N

 

 

N

 

 

 

 

 

Ph

Cu(I) Ph

 

Cl

Cl

 

OTf

46

47

 

dirhodium(II) catalysts, the highest selectivities (50–75% ee) were achieved with

rhodium(II) bis(naphtholphosphate) 48 and the more reactive NsN IPh (Ns ¼ p-NO2C6H4SO2).123

O O

OP O 4Rh2

48

Thus far, enantioselective intramolecular aziridination via metal nitrene intermediates has not been successful. Bromamine-T has recently been shown to be a viable source of nitrene for addition to alkenes in copper halide catalyzed reactions,124 and so has iodosylbenzene (PhI O)125 that forms 44 in situ. Conceptually, aziridination does not necessarily fall between cyclopropanation and epoxidation, as some have suggested. Instead, metal nitrene chemistry has unique problems and potential advantages associated with the electron pair at nitrogen that are yet to be fully overcome.

The mechanism of the copper-catalyzed aziridination of alkenes using 44 as the nitrene source has been described with the steps shown in Scheme 12.10 contributing

 

 

 

 

METAL NITRENES IN ORGANIC SYNTHESIS 585

 

 

 

 

 

 

 

 

 

 

IPh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ar

 

LnCu

+ ArSO2N

 

IPh

 

 

N

 

 

 

 

 

 

 

LnCu

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

ArSO2N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

R

 

R

 

 

 

 

 

 

 

 

PhI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

N

 

 

Ar

N

Ar

 

 

N

Ar

 

 

LnCu

 

S

 

 

 

 

 

LnCu

S

 

LnCu

 

S

 

 

 

 

 

 

O

 

 

O

 

 

O

O

O

 

 

O

 

 

 

 

 

 

 

Scheme 12.10

to the overall pathway.126 This study explained why both Cu(I) and Cu(II) salts yield the same active species in a catalytic cycle that involves Cu(I)/Cu(III) and radical intermediates, as first postulated by Jacobsen and co-workers.122a,b This pathway explains why metal nitrene access via azides is so difficult to achieve.

Like carbene insertions into carbon–hydrogen bonds, metal nitrene insertions occur in both intermolecular and intramolecular reactions.118,127,128 For intermole-

cular reactions, a manganese(III) meso-tetrakis(pentafluorophenyl)porphyrin complex gives high product yields and turnovers up to 2600;128 amidations could be effected directly with amides using PhI(OAc)2 (Eq. 51). The most exciting development in intramolecular C H reactions thus far has been the oxidative cyclization of sulfamate esters (e.g., Eq. 52),129 as well as carbamates (to oxazolidin- 2-ones),130 and one can expect further developments that are of synthetic advantage.131 Still the challenge of imposing enantiocontrol on these reactions is daunting.

 

 

 

 

 

 

 

 

 

NHTs

 

 

 

 

+ TsNH2

PhI(OAc)2

 

 

 

 

 

 

1.0 mol %

 

 

 

 

ð51Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mn(III) catalyst

 

 

 

 

 

 

 

83%

 

 

 

 

 

O

S

O

PhI(OAc)2

 

O

O

 

H2N

O

 

 

S

 

 

 

 

 

 

HN

O

 

 

 

 

 

 

 

Me

 

 

 

Rh2(OAc)4

Me

 

 

ð52Þ

Me

 

Me

 

 

 

 

CH2Cl2

Me

 

 

Me

 

 

 

 

90%

 

 

 

 

 

 

Developing analogues to carbene metathesis with nitrene chemistry is just now being explored, but few examples offer significant promise. Transfer of a nitrene to

586 SYNTHETIC CARBENE AND NITRENE CHEMISTRY

a metal from a diazene has been reported,132 and reactions of imido complexes with aldehydes and imines are known,133 but a catalytic approach is not yet evident.

5. CONCLUSION AND OUTLOOK

In contrast to considerations of 50 years ago, today carbene and nitrene chemistries are integral to synthetic design and applications. Always a unique methodology for the synthesis of cyclopropane and cyclopropene compounds, applications of carbene chemistry have been extended with notable success to insertion reactions, aromatic cycloaddition and substitution, and ylide generation and reactions. And metathesis is in the lexicon of everyone planning the synthesis of an organic compound. Intramolecular reactions now extend to ring sizes well beyond 20, and insertion reactions can be effectively and selectively implemented even for intermolecular processes.

Key to these applications has been the control of selectivity–chemoselectivity, regioselectivity, diastereoselectivity, and, especially, enantioselectivity. Here the design of chiral catalysts, begun already in the 1960s, has allowed access to one product when multiple products would, in the past, have been expected. Both electronic and steric control are important, and different metal ions with their associated chiral ligands can have unexpected effects.

Catalytic processes using diazo chemistry and stoichiometric methods with Fischer carbenes are complimentary for the introduction of a substituted carbene into a molecule. For methylene addition, however, there is no viable alternative to the modified Simmons–Smith reaction. Ring–closing metathesis, and its ROMP counterpart, have matured so fast that even now they rank among the most useful synthetic methodologies in organic chemistry.

So what is left to be accomplished? During the current decade one can expect further asymmetric applications and catalyst designs for metathesis reactions, a maturing of chiral catalyst development for cyclopropanation and insertion with increasing synthetic applications, and decreased reliance on traditional Fischer carbenes in synthesis. Major changes remain for ylide applications, especially those that can be enantioselective, in catalytic carbene chemistry, and advances in nitrene chemistry that are comparable to those achieved over the years in carbene chemistry are in their infancy.

Major challenges remain in catalyst development. There will be continuing efforts to increase turnover numbers and rates and to perform these reactions under environmentally friendly conditions. Transition metals, especially Cu, Rh, Ru, Co, Mo, and Zn are effective today; will other metals with attendant ligands be found whose electronic and steric properties are superior to those currently optimized?

Carbene delivery in catalytic reactions remains a challenge. Although diazocarbonyl compounds are relatively safe, and numerous commercial processes have used and continue to employ these materials, methods for diazo transfer using azides are of concern, and cost-effective alternatives are not evident. Also elusive are structures that could deliver stabilized carbenes, not unlike those of Fischer carbenes, in catalytic processes.

Соседние файлы в предмете Химия