Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

 

 

ELECTROPHILIC AND NUCLEOPHILIC METAL CARBENES

 

567

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

O

13

 

 

 

 

Me

 

Cyclopropanation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

CH2Cl2

 

 

ð7Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N2

88%

 

95% enantiomeric excess (ee)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N2

 

 

 

 

12 in hexane

COOMe

 

 

 

 

O

 

 

 

 

O

 

 

 

C—H Insertion

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

−50 °C, 67%

 

 

 

 

 

Ph

 

 

COOMe

 

 

 

 

H

 

 

ð8Þ

 

 

 

 

 

(12: Ar = p-C12H25C6H4)

97% ee

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74 : 26 diastereomer ratio (dr)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeOOC

COOMe

Carbonyl ylide

 

 

Ph O

 

 

N2

15 (R = i -Pr)

Ph

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formation/cycloaddition

 

 

 

 

 

O

DMAD/CH2Cl2

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79%

 

 

 

ð9Þ

 

 

 

 

 

 

 

 

 

 

 

 

90% ee

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMAD = dimethylacetylenedicarboxylate

 

 

N2

+ Ph

 

 

 

 

 

 

 

Rh2(OAc)4

COOMe

 

 

Addition

 

 

 

 

 

 

 

 

Ph

 

 

 

Ph

COOMe

 

 

N

 

 

 

 

 

NO2

 

 

N

 

 

NO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2Cl2

Ph

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84%

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

only (E )

ð10Þ

Diazocarbonyl compounds are optimum for these transformations, and they may be readily prepared by a variety of methods. The use of iodonium ylides (17) has also been developed,34 but they exhibit no obvious advantage for selectivity in carbene-transfer reactions. Enantioselection is much higher with diazoacetates than with diazoacetoacetates (18).

R

 

O

 

 

 

O

PhI C

 

 

 

 

 

 

 

 

R

 

 

 

 

OR'

C

 

Z

 

 

 

 

 

 

 

O

 

 

 

N2

17

 

 

 

 

 

18

 

 

2.2. Stable Transition Metal Carbene Complexes

In contrast to transition metal carbene complexes generated catalytically, those of the early transition metals are generally stable (Fischer-type carbenes) and undergo

568 SYNTHETIC CARBENE AND NITRENE CHEMISTRY

 

 

 

 

 

RLi

OLi

R'X

 

 

 

OR'

M(CO)6

(OC)5M

 

 

 

 

(OC)5M

 

 

R

 

 

 

 

 

R

 

 

R'' N+Br

 

 

 

 

 

R*SH or HNR*

 

 

 

 

 

 

 

4

 

 

O

 

 

 

 

 

2

 

ONR +

 

*

 

NR*

(SR*)

 

OCR'

 

 

 

4 R'COX

 

HNR2

2

 

(OC)5M

 

 

(OC) M

 

 

 

(OC) M

 

 

 

 

 

 

 

R

5

 

HSR*

5

R

 

 

R

 

 

 

Scheme 12.4

stoichiometric reactions. They are typically formed by addition of a metal alkyl to

the bound carbonyl of M(CO)6, where M is a transition metal in the chromium triad (Scheme 12.4).7,35,36 The difference between these metal carbenes and those gen-

erated catalytically via Scheme 12.3 is the presence of an electron-donating substituent (OR, NR2, SR) on the carbene rather than an electron-withdrawing substituent that stabilizes the reactant diazo compound (COOR, NO2).

Reactions are generally initiated by the loss of CO from the metal carbene. Benzannulation (Eq. 11)37 is one of the best known transformations, as is cyclopro-

 

 

 

 

O

OMe

n-Pr

Ce(IV)

n-Pr

Benzannulation (OC)5Cr

 

dry silica gel

 

 

ð11Þ

(oxidation)

 

 

60 °C, 10 min

 

 

O

 

 

 

 

 

 

 

 

51%

panation, but transformations resulting in the formation of four-, five-, and sevenmembered rings can also be achieved (e.g., Eqs. 12,38 1339). These reactions are

 

 

 

 

 

Ph

 

 

 

 

Ph

 

 

 

OMe

 

hν, CO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(OC)5Cr

 

 

 

+

 

 

 

O

 

C8H17 N O

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

C

H

 

 

 

 

 

CH2Cl2

MeO

 

 

 

 

ð12Þ

 

 

 

 

 

 

 

 

 

8

 

17

 

 

 

 

84%

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

>98:2 dr

 

 

 

 

 

O

 

 

 

 

 

 

 

n-Bu

 

(OC)5Cr

 

N

 

 

 

n-Bu

H3O+

 

 

 

DMF, 125 °C

 

 

 

 

 

 

ð13Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95%

 

 

 

 

 

 

 

O

DMF = dimethylformamide

initiated by the loss of CO from the metal to open a coordination site for complexation with an alkyne or alkene (Scheme 12.5). The key steps, however, arise from

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELECTROPHILIC AND NUCLEOPHILIC METAL CARBENES 569

(OC)5M

 

 

 

OMe

 

 

 

(-CO)

 

 

(OC)4M

 

 

OMe

 

 

R'

 

R'

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(OC)4M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

(+CO)

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Open coordination

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

site on metal

 

 

 

 

 

 

 

carbene

 

 

 

 

R'

 

 

 

 

 

 

 

 

R'

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

R'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transfer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R'

 

 

 

 

 

 

 

 

 

 

 

 

(solvent = S)

 

R'

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(OC)4M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(OC)4M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(OC)4M

 

R

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(under

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO insertion

 

 

atmosphere

 

 

 

 

 

 

 

CO insertion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of CO)

R'

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

fiveand six-

four-membered

 

 

 

 

 

 

 

(OC)4M

 

 

C

 

(OC)3M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R'

 

OMe

 

membered rings

 

 

rings

 

 

 

 

 

 

 

R'

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 12.5

insertion of the carbene into CO to form the intermediate ketene from which products are derived. Control of CO insertion (pressure and temperature) determines the eventual fate of the reaction.

2.3. Metathesis

One of the most useful reactions in organic synthesis, metathesis, had its origins with double-bond scrambling reactions in industrial chemistry and in the search for polymerization catalysts that could transform cyclic alkenes to polyalkenes (Eq. 14).40,41 In the polymerization reactions, known as ‘‘ring-opening metathesis polymerization,’’ the propagating species is a metalloalkene (metal carbene), and a metallocyclobutane is the presumed reaction intermediate. Here the catalytically active metal species remains attached to the growing end of the polymer chain, and the polymer is referred to as a ‘‘living polymer,’’ whose characteristics include

narrow molecular weight distribution and a facility for block copolymer formation.12,42,43 The catalysts that are desirable are those for which cyclopropanation

and b-hydride elimination (e.g., LnM CHCH2R ! LnM þ H2C CHR) are minimized.

 

 

 

 

 

R

 

 

 

 

 

 

Ring-opening

LnM

R

ð14Þ

Metathesis

 

 

 

R'

 

 

 

 

MLn

 

 

 

 

 

 

 

 

 

 

 

 

 

Polymerization m

 

 

 

 

R'

 

propagation

 

(ROMP)

 

 

 

 

m

 

Classical metathesis such as that for the ‘‘Phillips triolefin process’’ (Eq. 3) or the ‘‘Shell higher olefins process (SHOP)’’ (e.g., Eq. 15)44 set the stage for the next

570 SYNTHETIC CARBENE AND NITRENE CHEMISTRY

major advance in this field—ring-closing metathesis (Eq. 16).11c,d,45 Here the low reactivity of unstrained olefins toward ring-opening metathesis is a major

 

 

 

 

+ C10H21CH

 

 

 

catalyst

 

 

 

SHOP

MeCH

 

CHMe

 

CHC10H21

 

 

 

 

2MeCH

 

CHC10H21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð15Þ

 

Ring-Closing

CH2

R

 

 

 

 

 

 

LnM

 

 

 

 

CH2

 

 

 

Metathesis

 

 

 

+

 

ð16Þ

 

 

 

 

 

 

 

 

CH

2

 

(RCM)

 

 

 

 

 

 

 

 

 

 

CH2

consideration in the synthetic viability of the process. The formation of five-, six-, or seven-membered rings, and even macrocyclic compounds, can be made to occur with the appropriate catalysts (Eqs. 17,46 1847).

MeOOC

 

5 mol% 5 (R = Ph)

MeOOC

 

 

 

 

 

 

ð17Þ

MeOOC

 

25 °C in CH2Cl2

MeOOC

 

 

 

 

100%

 

O

 

 

 

O

 

 

O

O

 

 

 

6 mol % 6

 

 

 

Me

 

ð18Þ

 

 

CH2Cl2, reflux

Me

 

 

40 h

 

 

 

 

 

57%

 

As indicated by the examples, ruthenium catalysts 5–7 can be used for compounds containing a broad range of functional groups, especially those containing oxygen, and they are also tolerant to water. The greater challenge is the use of these catalysts for ‘‘cross-metathesis’’ for which SHOP (Eq. 15) is one example, and Eq. 1948 represents a recent success.

 

 

Me

 

Me

 

AcO

+

 

5 mol % 7

AcO

CHO

ð19Þ

3

CHO

 

3

92% [>20:1 (E/Z )]

2.4. Other Alkylidenes

There is a variety of reagents that undergo carbene-related transformations that do not fit into the categories of nucleophilic and electrophilic metal carbenes described earlier. Those that are the most versatile for organic synthesis, like the Tebbe

ELECTROPHILIC AND NUCLEOPHILIC METAL CARBENES

571

reagent (19, Cp ¼ C5H5)49 or ‘‘Zn CH2’’ in the Simmons–Smith reaction,50 occur as adducts. Their reactions are typical of nucleophilic or electrophilic metal carbenes even though these intermediates may not ever be involved in the mechanism of the transformation.

Cp

 

Me

 

 

Ti

Al

"Cp2Ti

 

CH2"

IZnCH2I

"Zn CH2"

 

Cp

Cl

 

Me

 

 

 

19

 

 

 

Reactive intermediate

Tebbe reagent

 

 

 

in Simmons–Smith reaction

The Tebbe reagent, first reported in 1978,51 has been used extensively for stoichiometric carbonyl oxygen replacement by methylene (e.g., Scheme 12.6 and Eq. 20).52 Aldehydes, ketones, esters, and even selected amides, undergo this transformation. And, since the Tebbe reagent is a source of the nucleophilic Cp2Ti CH2, ring-closing metathesis is the outcome when a second equivalent is used on the diene intermediate. Understanding the Tebbe reagent did, in fact, lead to a basic understanding of homogenous metathesis catalysts.53

 

 

R

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

1 equiv

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

O

 

 

 

 

O

19

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 25 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF = tetrahydrofuran

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 12.6

 

 

 

 

H

H

H

 

 

 

 

4 equiv

 

 

 

 

 

 

H

H

H

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnO

 

 

 

 

 

 

 

 

 

19

 

 

 

BnO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnO

 

O

O

 

 

 

 

 

 

 

BnO

 

O

 

 

 

 

THF

 

 

 

 

 

ð20Þ

 

 

 

 

 

 

 

 

 

 

H

H

H

 

 

 

 

71%

 

 

 

 

 

 

H

H

H

Bn = benzyl

The Simmons–Smith reaction54 and its variants55 are widely used for the stereospecific synthesis of cyclopropane compounds. The methodology involves the use of copper-treated zinc metal (the zinc–copper couple) with diiodomethane to add methylene to a carbon– carbon double bond. Alternative use of diazomethane in catalytic reactions does not offer the same synthetic advantages and is usually avoided because of safety considerations.6 As significant as is the Simmons–Smith reaction for cyclopropane formation, its employment for organic synthesis was markedly advanced by the discovery that allylic and homoallylic hydroxyl groups accelerate and exert stereochemical control over cyclopropanation of alkenes56 (e.g, Eq. 21),57 and this acceleration has been explained by a transition state model

572 SYNTHETIC CARBENE AND NITRENE CHEMISTRY

OR

OR

Relative rate

 

1.0

 

 

 

Zn–Cu / CH2I2

R = Me

ð21Þ57

 

 

H

2.0

 

 

 

 

Et2O

 

 

Li

4.8

 

 

 

 

 

(20 and 21) in which a Lewis acid (ZnX2) is associated to oxygen.50b,58 This latter understanding has allowed the redesign of the Simmons–Smith reaction for

 

X

 

 

 

X

 

 

 

 

 

 

 

 

 

Zn

 

 

Zn

X

 

 

X

 

 

 

 

RO

 

 

X

Zn

 

 

CH2

 

Zn

 

 

CH2

 

 

 

 

 

X

 

 

 

 

X

 

 

 

 

20

 

 

 

 

 

 

 

 

 

21

optimum synthetic advantage (e.g., Eq. 22,59 2360). As noted, reagent modification provides significant control of reaction pathway and selectivity. Enantiocontrol is possible with the use of chiral catalysts such as 22.60

 

 

 

Et2Zn, CHI3

ZnR

 

 

E+

E

BnO

 

OBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2Cl2

BnO

OBn

 

 

BnO

OBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E = Br, I, D (85–95% yield)

ð22Þ

 

 

 

 

 

 

 

Et

Et

 

 

 

 

 

 

 

O

O

Ph

OH

TADDOL-Ti(Oi-Pr)2 (22)

Ph

 

 

Ph

Ph

 

 

OH

(23)

Ph O

O Ph

Zn(CH2I)2

 

 

 

 

 

 

 

 

92% ee

 

 

 

85%

 

 

 

 

Ti

 

 

 

 

 

 

 

i-PrO Oi-Pr

TADDOL-Ti(Oi-Pr)2

22

3. SYNTHETIC ADVANTAGES OF METAL CARBENES

3.1. Applications of Catalytic Methods with Diazo Compounds

The nature of the diazo compound and the identity of the catalyst are important variables for the success of these transformations.6 Catalytic methods are not

SYNTHETIC ADVANTAGES OF METAL CARBENES

573

successful with simple diazo compounds such as CH2N2 or aliphatic diazo compounds because of a variety of competing reactions. However, diazocarbonyl compounds, which are easy to prepare and handle,61 offer an abundance of uses for organic synthesis. Their reactivity for diazo decomposition is dependent on the number and nature of the groups that stabilize the diazo unit (Scheme 12.7). Ethyl diazoacetate, which is available commercially, has been investigated to the greatest extent, but phenyland vinyldiazoacetates have provided a wealth of pathways not available with the simpler diazo compounds.

 

 

 

 

 

 

 

 

 

 

 

 

 

N2

Rate for

RCCHN2

> ROCCHN2

> PhCCOOR

 

 

 

> RCCCOOR

Diazo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decomposition

O

O

N2

O

Scheme 12.7

3.1.1. Cyclopropanation and Cyclopropenation. At this time, intermolecular cyclopropanation with alkyl diazoacetates is best accomplished with cobalt catalysts 1627 or 2362 to achieve high enantiocontrol with high selectivity for the formation of the trans-disubstituted cyclopropane isomer (Eq. 24). To form the

 

ROOCCHN2 +

Ph

 

 

catalyst

 

ð24Þ

 

 

 

 

 

Ph

COOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

Catalyst

 

 

 

Yield (%)

trans/cis

%ee

 

 

 

 

 

 

 

 

 

 

t-Bu

23

(Ar ¼ Me3C6H2)

80

96:4

93(t)

Et

16

99

91:9

96(t)

Et

11

(M ¼ Co)

 

77

73:27

99(t)

t-Bu

14

 

89

2:98

98(c)

 

 

Ph

 

Ph

 

 

 

 

 

 

N

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Co

 

 

MeO

 

 

 

O

 

O

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

23

cis-disubstituted cyclopropane isomer, the use of 14 (M ¼ Co) gives optimum results for diastereocontrol and enantiocontrol.63 Enantioselectivity for intramolecular cyclopropanation of allyl diazoacetates is best achieved with chiral dirhodium(II) carboxamidate catalysts ( 94% ee, e.g., Eq. 7),6,28 and chiral dirhodium(II) carboxylates give the highest enantioselectivities for intermolecular cyclopropanation reactions of phenyldiazoacetates (e.g., Eq. 25).23,31 The lesson here is that different chiral catalysts exhibit different selectivities for different applications. The selectivities are often based on the barriers to the approach of the

574 SYNTHETIC CARBENE AND NITRENE CHEMISTRY

 

 

Ph

 

COOMe

12

 

MeOOC

H

 

 

 

 

 

 

 

 

+

Ph

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

N2

pentane, rt

 

 

 

ð25Þ

 

Ph

 

 

 

91%

 

 

(E /Z ) = > 95:5 92% ee

carbon–carbon double bond to the metal carbene center (e.g., 24 and 25, where L is a linker), and the outcome is becoming predictable.64 For example, copper catalysts

H

 

 

 

L

LnM

 

 

 

O

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

LnM

 

O

 

 

 

 

 

L

 

 

 

 

 

 

 

 

H

O

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

24

25

prefer 24, whereas rhodium catalysts prefer approach 25. Applications in total synthesis include the synthesis of the antidepressant sertraline (26),65 the cyclopropane– NMDA receptor antagonist milnacipran (27),66 and sirenin (28).67

H NHMe

 

 

 

Me

H

Ph

H

 

 

 

+Cl-

 

O

NH

 

 

3

Cl

 

NEt2

OH OH

Cl

 

 

Me

 

 

 

Sertraline (26)

(−)-milnacipram (27)

Sirenin (28)

The addition to a carbon– carbon triple bond results in the formation of cyclopropene products, and with diazoacetates the catalyst of choice for intermolecular addition is the dirhodium(II) carboxamidate 13 (e.g., Eq. 26).68 The reactions are general, except for phenylacetylene whose cyclopropene product undergoes [2 þ 2]-cycloaddition, and selectivities are high. However, high selectivities have not been reported for reactions with allenes.

 

13

 

H

COOMe

CH(OEt)2

+ MeOOCCHN2

 

 

 

 

 

ð26Þ

CH2Cl2

 

 

 

 

 

 

(EtO)

CH

 

 

42%

2

>98% ee

 

 

 

 

Intramolecular cyclopropanation reactions are not limited to the formation of fiveto seven-membered rings, as once believed. They occur with high stereocontrol and yield for reactions that produce large rings.69 Intramolecular cyclopropenation is also a facile process with ring sizes of 10 or higher. High levels of enantiocontrol can be achieved in these reactions with catalysts appropriate to

SYNTHETIC ADVANTAGES OF METAL CARBENES

575

the transformation (e.g., Eqs. 2770, 2871). Note that the choice of catalyst (Eq. 28) can influence chemoselectivity as well as stereoselectivity. As the length of the chain increases, selectivity approaches outcomes that can be predicted from intermolecular reactions.

 

 

 

 

 

O

 

11

 

 

 

 

 

 

O

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N2

 

Me

 

 

 

 

 

 

 

 

 

 

 

ð27Þ

 

 

O

 

 

 

 

 

 

 

 

CH2Cl2

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61%

 

 

 

 

 

 

 

H

Me

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90% ee

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

13

 

 

 

 

O

29

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

CH2Cl2

 

 

 

 

N2

CH2Cl2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76%

 

 

 

 

O

 

 

80%

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

30 (96% ee)

 

 

 

 

 

 

 

 

 

 

 

 

 

COOi-Bu

 

 

 

 

31 (97% ee)

ð28Þ

 

 

 

 

 

 

 

O

 

 

 

(30:31 = 96:4)

 

 

 

 

 

 

 

 

 

 

(31:30 = 86:14)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

4Rh2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

29

Beyond these systems, challenges in stereocontrol remain for both interand

intramolecular cyclopropanation reactions with diazoketones, diazoketoesters (18), diazomalonates, and diazomethane.6,31–33,72 Although some progress has

been made in intramolecular reactions of diazoketones, with selected examples having high % ee values,73 enantiocontrol is generally low to moderate for these systems.

3.1.2. Insertion. One of the unique advantages of dirhodium(II) catalysts in synthesis is their ability to effect carbon–hydrogen insertion reactions.6,32,33,74

For intramolecular reactions insertion into the gamma position is virtually exclusive, and only when this position is blocked or deactivated does insertion occur into the beta or delta C H position (e.g., Eqs. 29,75 30,76 and 3177). The electrophilic character of these insertion reactions is suggested by the C H bond reactivity in competitive experiments (3 > 2 1 )78 and by the enhancement due to

O

 

O

 

 

 

COOMe

 

 

 

COOMe

 

 

 

 

 

Rh2(OAc)4

Me

 

 

 

 

 

 

 

 

 

 

 

 

N2

ð29Þ

 

 

 

 

 

 

 

 

CH2Cl2

 

Me

 

 

 

 

77%

 

Only trans

 

 

 

 

 

 

 

 

 

576

SYNTHETIC CARBENE AND NITRENE CHEMISTRY

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

t-Bu

 

Rh2(OAc)4

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

N

 

 

 

 

 

 

 

Me

 

 

ð30Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOEt

 

 

 

 

 

EtOOC

 

 

 

 

 

N2

 

 

CH2Cl2

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96%

 

 

 

 

 

t-Bu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only trans

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

Me

 

Rh2L4

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

ð31Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2Cl2

 

 

 

 

 

 

 

 

 

 

 

 

 

CHN2

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56−97%

 

Me

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

pfb ¼ CF3CF2CF2COO

 

 

 

 

Rh2(pfb)4

 

0

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

Rh2(OAc)4

44

 

 

55

 

cap ¼

N

 

 

 

 

Rh2(cap)4

 

100

 

 

0

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

heteroatoms such as oxygen79 or nitrogen. A recent theoretical treatment80 confirmed the mechanistic proposal (Scheme 12.8) that C C and C H bond formation with the carbene carbon proceeds as the ligated metal dissociates.81 As indicated by the influence of ligands on selectivity in Eq. 31, one transformation may be turned on and the other turned off with the proper selection of catalyst.

A

 

 

 

 

 

 

 

 

B C H

 

 

A

 

 

 

D

 

 

 

 

A

 

 

H

 

B

C

H

H

 

 

 

 

 

 

 

Rh2L4

 

 

 

 

 

E

 

D

B

C

C

H

 

 

 

C

D

E

 

 

 

 

H

 

 

 

 

 

Rh2L4

 

 

 

 

 

E

 

 

 

 

Scheme 12.8

Enantiocontrol in C H insertion reactions is highly effective for diazoacetates and diazoacetamides,32 and although various chiral catalysts have been used, 1582 and 2983 have proven to be the most selective. Examples of biologically active compounds that have been prepared in >90% ee by this methodology include the lignan lactones (e.g., enterolactone 30),84 the sugar-based 2-deoxyxylolactone 31,85 and the g-aminobutyric acid (GABA) receptor agonist (R)-baclofen 32.86

Until recently, intermolecular C H insertion reactions were more a curiosity than a synthetically productive undertaking. Davies and Antoulinakis87 discovered in the late 1990s that aryland vinyldiazoacetates undergo intermolecular insertion with a wide variety of hydrocarbons in high yield. With Rh2(S-DOSP)4 (12, Ar ¼ C12H25C6H4) moderate-to-high enantioselectivities have been achieved, but diastereoselection is often low to moderate (e.g., Eq. 3288, 3389). Note that a

Соседние файлы в предмете Химия