Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

476 ATOMIC CARBON

ethylene, vinylacetylene (29), and benzene as the only isolable products.64 Attempts to trap 28 were unsuccessful. The ethylene and 29 were postulated to arise from the known retro Diels–Alder reaction of an intermediate 28.65 However, the use of 13C atoms revealed that the label in 29 was distributed on both alkyne carbons and the vinyl CH. Hence, an additional pathway to 28 involving an initial C H insertion to give vinylcarbene (30), which then ring expands, was postulated. Since the label is unequally distributed between C1 and C3 in 29, it seem likely that a direct cleavage of 30 to ethylene and 29 competes with ring expansion (Eq. 22). In this case, the ratio of DBA to C H insertion was 0.87:1.64

 

 

 

 

 

 

 

 

 

 

C:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ *C

 

 

+

*

C:

 

 

 

 

29

 

 

 

C

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 H

 

 

 

+

 

 

 

 

 

*C = 13C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

ð22Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

C*

C

 

 

*

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

C

 

H

 

+

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The competing ring expansion and cleavage in carbene 30 was confirmed by generating the deuterium labeled carbene 30a by the C atom deoxygenation of aldehyde 31 (Eq. 23).64 While the origin of the benzene in these reactions has not been established, several pathways to energetic cyclohexadiene followed by loss of hydrogen may be envisioned.

O

C

 

 

 

 

 

 

H

 

 

C

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

C:

 

 

 

 

+

 

 

 

+

 

CO +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

D

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30a

 

 

 

 

 

C

 

H

31

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

C

 

D

ð23Þ

 

 

 

 

 

 

 

 

 

 

 

Carbon atoms react with norbornadiene 32 in a manner analogous to their reaction with cyclopentene.66 Thus, DBA and vinyl C H insertion both generate bi- cyclo[3.2.1]octa-2,3,5-triene (33), which undergoes a known67 [3.3] sigmatropic rearrangement to endo-6-ethynylbicyclo[3.1.0]hex-3-ene (34). When 13C atoms are employed, the label distribution indicates that the three pathways in Eq. 24 are involved. The DBA gives tricyclopropylidene (35), which opens to 33 (path a). The C H insertion gives vinylcarbene (36), which either cleaves directly to 34 (path b) or ring expands to 33 (path c). In this case, the ratio of DBA to C H insertion by C atoms is 1.08:1. In neither 28 nor 33 is cumulene formation from the

REACTIONS OF ATOMIC CARBON

477

carbene expected to be reversible. These reactions are calculated to be endothermic by 27 and 30.5 kcal/mol, respectively.

 

 

* C

 

 

 

 

 

c

*

*

H

 

 

 

 

 

 

 

+

 

 

 

CH

 

 

 

 

 

 

 

*

 

 

 

*

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

C:

 

 

 

 

 

C

32

*C = 13C

35

 

36 C

 

 

H

C

 

 

 

 

 

 

 

 

 

a

 

 

 

H 33

 

34 CH

 

H

 

 

b

H

 

 

*

 

*

 

 

 

*

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

C

 

 

 

 

 

 

 

34

 

CH

33

 

34

*

 

 

 

 

 

CH

 

 

 

ð24Þ

The reaction of arc generated 13C atoms with cyclooctatetraene (37) produces indene (22) in which the label is on C9.68 An initial DBA followed by ring opening to cyclononapentaene (38) is proposed. In analogy with known reactions of 38,69 electrocyclic closure followed by H migration leads to 22-13C9 (Eq. 25).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

*

 

 

 

 

+

*

C

 

 

*

 

 

 

*

 

C

 

C

 

 

 

 

 

 

 

 

 

C:

 

 

 

 

C

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H H

37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*C = 13C

 

 

 

 

 

 

 

 

 

 

38

 

 

22

ð25Þ

3.5. Halomethylidene Formation in the Reaction of Carbon Atoms with Carbon–Halogen Bonds

In testing the limits of C atom reactivity, the extremely strong C F bond provides an interesting case. Although C atoms, like carbenes, fail to insert into C F bonds, unlike carbenes, they abstract fluorine in a practical method for generating and investigating the reactions of fluoromethylidene, CF.70,71 When an alkene is added to the C þ CF4 reaction mixture, the CF may be trapped by DBA to give a fluorocyclopropyl radical (Eq. 26). Like singlet carbenes, CF adds to double bonds in a stereospecific manner to give cyclopropyl radicals in which the original stereochemistry of the alkene is preserved.71 When the intermediate fluorocyclopropyl radical has sufficient strain energy, electrocyclic ring opening can occur.72

 

.

 

 

.

 

R-H

H

F

 

 

CF4 + C

 

. CF3 + F-C:

 

 

 

 

F

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

H

 

 

 

 

 

 

 

 

 

 

 

ð26Þ

478 ATOMIC CARBON

Reaction of CF with benzene generates the 7-fluoronorcaradien-7-ly radical (39), which abstracts hydrogen (from added isobutane) and opens to 7-fluorocyclohepta- triene (40). Cycloheptatriene (10) is trapped as tropylium fluoroborate (41) by the addition of BF3 (Eq. 27).73 An additional product of CF þ benzene is fluorobenzene (42), in which labeling studies demonstrate that the attacking carbon contains

the fluorine in 42. The interesting transfer of CH in Eq. 28 is proposed to account for the formation of 42.73,74

 

 

F

H F

 

H F

 

BF4-

 

.

 

 

 

BF3

.

 

R-H

 

 

 

. F-C: +

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

39

 

40

41

ð27Þ

F

 

 

F

 

 

H

H

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

* C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* C

 

 

 

Ph-H

 

 

 

 

.

 

 

 

 

H C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*C

 

* C

 

 

* C

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

F

 

 

 

 

 

 

 

 

 

 

39

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

ð28Þ

Like carbenes, C atoms insert into the weaker C Cl and C Br bonds. For example, reaction of C with CCl4 may be rationalized by assuming an initial C Cl insertion to give the chlorocarbene 43 (Eq. 29).16 However, C also abstracts Cl from CCl4 to give CCl, which has been trapped by cyclohexene to give 7-chloronor- caran-7-yl radicals (44). These radicals abstract both H and Cl from substrate (Eq. 30).75 Control experiments demonstrate that CCl2 is not involved in this reaction. Reaction of C with chlorofluorocarbons results in abstraction of both F and Cl with the latter predominating as would be expected from a consideration of the relative bond strengths. An example is shown in Eq. 31.75 Abstraction of halogen by C can also be used to generate CBr and CI. Thus, reaction of C with CBrF3 and CIF3 in the presence of cyclohexene results in trapping products of the bromoand iodonorcaranyl radicals, respectively.76

 

:

 

 

 

 

 

 

 

C + Cl-CCl3

 

C

 

CCl3

 

 

Cl2C

 

CCl2

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

43

 

 

ð29Þ

 

 

 

 

CCl4

 

 

 

 

 

Cl3C

CCl3

 

 

 

 

 

 

 

C

 

 

 

 

 

 

Cl

Cl

 

 

 

 

 

 

 

 

 

 

 

REACTIONS OF ATOMIC CARBON

479

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

.CCl

.

 

cyclohexene

.

R-H

 

 

CCl

4

+ C

 

 

+ Cl-C:

 

 

 

 

 

Cl

 

 

+

Cl

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

R-Cl

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð30Þ

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

CCF3Cl +

C

 

 

. CF3 + Cl-C:

1) cyclohexene

 

H

 

H

 

 

 

.

 

 

 

 

+

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. CF2Cl +

F-C:

2) R-H

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

:

1

 

ð31Þ

Although this method of generating halomethylidenes has received relatively little attention, at present it is the only way to examine the chemistry of these interesting reactive intermediates. If the chemistry of monovalent carbon intermediates is to be elaborated, this appears to be the best way to produce these species.

3.6. Reaction of Carbon with Aromatic and Heteroaromatic Compounds

3.6.1. Reaction of Carbon with Benzene and Substituted Benzenes. The reaction of atomic carbon with benzene has a long history.18,77 Products that have

been identified in various studies are benzocyclopropene (45), toluene (46), cycloheptatriene (47), diphenylmethane (48), heptafulvalene (49), and phenylcycloheptatriene (50) (Eq. 32). Of these products, only 45 results exclusively from carbon þ benzene. However, 46–50 can be rationalized by assuming an initial C H insertion to give phenylcarbene 51 and/or DBA to generate norcaradienylidene 52, which opens to cycloheptatetraene 53.

+ C

 

+

 

+

 

+ Ph-CH2-Ph

 

 

 

 

 

45

 

46

47

48

 

 

+

 

 

 

+

Ph

ð32Þ

 

 

 

 

 

 

 

 

 

 

 

 

49

 

 

 

50

 

Although the situation is complicated by the well-known phenylcarbene rearrangement that interconverts 51 and 53,78 the use of labeled carbon allows an

480 ATOMIC CARBON

evaluation of initial C atom reactivity. Thus, initial C H insertion places the label on a carbon bearing a hydrogen while DBA labels the quaternary carbon (Eq. 33).

 

 

 

 

 

H *

 

 

 

 

 

 

 

H

*

H

 

 

 

C:

 

 

 

 

 

 

 

C:

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*C

*C

*

 

*

 

 

 

*C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C:

 

 

 

 

 

 

 

 

 

 

 

C-H ins

DBA

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53

 

51

 

 

 

52

53

51

ð33Þ

In the reaction of nucleogenic 11C atoms with toluene, the methyl group traps an initially formed o-tolylcarbene (54) as benzocyclobutene (55).79 A partial degradation of 55 and an examination of the label distribution indicated that 43% of 55 arose from 54 formed by an initial C H insertion (Eq. 34). The remainder of the label in 55 was in the ring, indicating the initial formation of the m- and p-tolylcar- benes and/or a methylcycloheptatetraene.

 

 

H *

 

 

 

 

 

C:

 

 

 

+ *C

 

 

 

43% of*C

ð34Þ

 

 

 

*C = 11C

54

55

 

In a similar study, arc generated 13C atoms were allowed to react with tert-butyl- benzene in order to use the tert-butyl group as an intramolecular trap for the carbene.77i This reaction gave dimethylindane-3-13C (56) and 3,3-dimethyl-3-phen- ylpropene-1-13C (57). The label distribution in 56 indicates that it arises from an initial insertion into an ortho C H bond to give o-tert-butylphenylcarbene (58), while 57 results from insertion into a methyl group C H (Eq. 35). The fact that

 

:

 

 

 

 

 

 

*C

 

 

 

 

+ *C

 

H

H*

 

 

 

 

 

 

 

 

+

*

 

 

 

C:

 

 

 

*

58

 

57

 

C = 13C

 

 

 

 

 

 

ð35Þ

*

56

REACTIONS OF ATOMIC CARBON

481

CH groups in the aromatic ring of 56 are unlabeled indicates that neither the m- nor p-tert-butylphenylcarbene 59 and 60, if formed, rearranges to 58. Addition of HBF4 to the cold reactor bottom following the 13C þ tert-butylbenzene reaction results in the formation of tert-butyltropylium fluoroborate (61) labeled in the 3- and 4- positions in a 1:2 ratio, and no excess 13C in the 2-position (Eq. 36). These results are consistent with formation of carbenes 58–60 by C H insertion followed by intramolecular trapping of 58, and rearrangement of 59 and 60 to tert-butyl- cycloheptatetraenes (62), which are trapped by HBF4. Calculations indicate that the first step of the phenylcarbene rearrangement, ring expansion of 51, must surmount a barrier of 13 kcal/mol to give 53.80 However, rearrangement back to 51 (in this case interconverting 58–60) must cross a barrier of 30 kcal/mol, and it may be that initial ring expansion of 59 and 60 leads to cycloheptatetraenes 62 which, lacking the energy to rearrange further, are trapped by HBF4. A similar result is observed when 58 and 60 are generated by deoxygenation of the corresponding aldehydes. Thus, 58 is trapped intramolecularly while 60 ring expands to a tertbutylcycloheptatetraene that is trapped as the tropylium salt.

 

 

 

 

 

 

 

 

 

BF4-

 

 

*

 

 

 

 

 

 

HBF4

*

+

 

+ C

 

 

+

 

 

 

 

+

 

 

 

 

* C:

60

*

 

 

C

C

*

*C = 13C

 

62

 

 

 

59 H * C:

1

:

2

 

 

 

 

H

 

 

 

61

 

61

 

ð36Þ

An intermediate cycloheptatetraene can also be trapped in the addition of carbon to benzene itself. When 13C atoms react with benzene-d6 and HBF4 is added, tropylium fluoroborate (41), containing deuterium on the labeled carbon, is observed.

This result is consistent with an initial C D insertion by carbon to give 51-d6, which ring expands to 53-d6, and is trapped by HBF4 (Eq. 37).77i

+ *C

 

 

 

 

 

 

HBF4

+

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

D

*

 

 

*

BF4-

d6

C

D

 

d5

D

 

d5

 

 

d5

 

 

 

*C = 13C

51-d6

 

 

 

53-d6

 

 

41-d6

 

ð37Þ

Several other substituted benzenes have been reacted with carbon and the substituted phenylcarbene or cycloheptatetraene have been trapped in an intramolecular reaction. Thus, phenol reacts with C atoms to give tropone (63) and traces of the o-, m-, and p-cresols.81 In this case, an initial o-, m-, or p-hydroxyphenylcarbene (64) is postulated to ring expand to a hydroxycycloheptatetraene that traps itself by intramolecular proton transfer (Eq. 38). A competing reaction of 64 is

482 ATOMIC CARBON

intersystem crossing (isc) to the triplet that abstracts hydrogen to produce the cresols. Carbenes 64, produced by C atom deoxygenation of the corresponding aldehydes behave in a similar manner. It has also been reported that generation of carbenes 64 from the pyrolysis of the corresponding tetrazoles at 530–700 C leads to 63.82

H

 

 

C:

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

OH

 

 

 

 

+ C

 

 

OH

 

 

 

O ð38Þ

 

 

 

 

 

C

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

 

 

 

 

 

 

63

 

 

Reaction of arc generated C atoms with anisole gives phenyl vinyl ether, benzodihydrofuran (65), from trapping of the o-methoxyphenylcarbene (66a), the o-, m-, and p-methylanisoles, and methoxytropylium ion from trapping of the methoxycycloheptatetraenes (Eq. 39).83 When carbenes 66a–c are generated by C atom deoxygenation of the corresponding anisaldehydes, 65 again results along with products of ring expansion, which are trapped by the addition of HBF4. It is interesting that calculations (B3LYP/6-311þG**//B3LYP/6-31G*) predict that the lowest energy reaction of 66a is intramolecular trapping to give 65 ( Hz ¼ 7:0 kcal/mol) with ring expansion ( Hz ¼ 15:4 kcal/mol) not expected to be competitive.83 However, ring-expansion products, which may result from the high energy of 66a from the C atom reactions, predominate in this system.

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

CH2

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OCH3

 

 

OCH3

 

OCH3

OCH3

 

 

OCH3

 

C

 

 

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

+

 

 

 

 

 

C

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HBF4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66a

 

66b

66c

 

 

 

 

 

 

 

 

 

 

 

 

1) isc

 

 

 

+

 

 

OCH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) R-H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BF4-

OCH3

CH3

ð39Þ

REACTIONS OF ATOMIC CARBON

483

Cocondensation of arc generated carbon with naphthalene (67) at 77 K generates cyclobuta[de]naphthalene (68) and the 1- and 2-methylnaphthalenes (69a,b).84 The intermediacy of the 1- and 2-naphthylcarbenes (70a,b) is postulated. Intersystem crossing produces triplet 70a,b that abstract hydrogen, while intramolecular trapping of singlet 70a gives 68 in a known reaction (Eq. 40).85 Generation of 70a and 70b independently by the deoxygenation of the corresponding naphthaldehydes results in the formation of 68 and 69a,b. The fact that 68 is formed when 2-naphthaldehyde is deoxygenated indicates that 170b rearranges to 170a under the energetic reaction conditions. This rearrangement has been shown to occur at high temperatures85 and has been studied computationally.86

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

+ C

 

 

 

 

 

+

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67

 

 

77 K

 

 

 

 

 

 

 

 

 

 

68

 

69a

R-H

69b

via

H

 

 

 

 

 

R-H

 

 

 

 

 

 

 

 

 

 

H

 

 

170a

+

 

 

 

H

isc

 

+

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

170b

 

 

 

370a

 

370b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð40Þ

Cocondensation of C with a 1:1 mixture of 67-d0 and 67-d8 generates 68-d0 and 68-d8 in a 0.12 ratio as a result of a large kH/kD for isc in 70a,b. This unusually large kH/kD is postulated to result from the generation of the singlet state of 70a,b with excess energy and it is the isotope effect upon the degradation of the energetic carbene to the triplet state that is observed. The large isotope effect on isc leads to more triplet products from 70a,b-d0 than from 70a,b-d8. Thus, when 70a,b are trapped with the 2-butenes, 4–18% of the carbene adducts are formed nonstereospecifically from C þ 67-d0, while addition of the carbenes from C þ 67-d8 to the 2-butenes produces only stereospecific adducts (Eq. 41). A similar result is observed when triplet 70a,b are trapped with oxygen (Eq. 42).84

 

 

 

 

 

 

 

 

 

 

1-N

 

2-N

 

67-d0

+ C

 

 

 

 

 

1-N

+

2-N

+

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

+

 

 

 

ð41Þ

 

 

 

 

1.00

0.19

0.05

0.70

0.04

67-d8

+ C

 

 

 

 

 

 

0.21

0

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

0.29

0

 

 

 

 

 

 

N= Naphthyl

484

ATOMIC CARBON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

CH3

 

CH3

 

CH

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

67-d0

+ 67-d8

 

 

+

 

+

 

+

 

 

+

 

 

 

 

O2

 

 

 

 

 

 

 

 

 

 

1 : 1

68

 

 

 

69a

 

69b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d 0

1.00

 

 

2.07

0.83

22.9

14.4

 

 

 

 

d 8

5.67

 

 

0.0

0.17

3.3

0.8

 

 

ð42Þ

3.6.2. Reaction of Atomic Carbon with Pyrrole. Cocondensation of arc generated C with pyrrole 71 gives pyridine 72.18 This clean reaction is useful to insure that the system is functioning properly when setting up a new carbon arc reactor. Double labeling experiments with 13C atoms and 71-1-d1 produce 72 with both the 13C and the D on C3 (Eq. 43).18 While it is tempting to propose that this reaction proceeds via 1-aza-2,3,5-cyclohexatriene (73), which undergoes a 1,5 hydrogen shift (path a Eq. 43), calculations (MP2/6-31G*) show that the intermediate is planar and is best represented as the aromatic dehydropyridinium species 74, which adds D in an intermolecular acid–base reaction (path b Eq. 43). The intramolecular

acid–base reaction in Eq. 43 was confirmed by the addition of MeOD to the C þ 71-d0 reaction.18

 

 

 

 

 

 

 

 

 

*

 

 

 

 

*

X

 

 

 

 

 

 

a

 

 

 

C

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

73

 

 

 

 

N

 

 

 

 

 

 

 

 

*C:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72

 

 

 

 

 

+ *C

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

N

b

 

 

 

*

 

-

 

X N

 

 

*

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

X

 

+ C

 

 

 

 

 

 

 

 

+ N -

71, X=H, D

 

 

 

 

N

74

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

ð43Þ

The dehydropyridinium species 74 represents a new class of reactive intermediate that is conveniently accessed through C atom chemistry. When N-methylpyrrole (75) is used as a substrate in this reaction, the lack of an acidic hydrogen permits trapping a portion of the nucleophilic dehydropyridinium by CO2 (Eq. 44).87

 

 

 

 

 

 

 

 

 

-

 

 

COO-

 

 

 

 

C:

 

+ C

CO2

+ C

 

+ C

 

 

 

 

 

 

 

 

 

 

N

 

N

 

N

 

 

N

 

CH3

 

 

CH3

 

 

 

 

CH3

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

75

 

 

 

 

 

 

 

 

 

 

 

ð44Þ

REACTIONS OF ATOMIC CARBON

485

3.6.3. Reaction of Carbon Atoms with Thiophene. The reaction of atomic carbon with thiophene (76) is more complex than that with 71.88 The use of 13C atoms indicates that an important pathway involves addition of C to a double

bond to give thiabicyclopropylidene (77), which ring opens to thiacyclohexa- 2,3,5-triene (78), now calculated to be an energy minimum.88,89 Addition of

H(D)Cl during the reaction traps 78 as the 3 labeled (13C and D) thiopyrylium ion (79). When acid is absent, 78 rearranges to the 2-thienylcarbene (80), labeled predominately on the quaternary carbon that is trapped by thiophene to give 81. An additional product of acid trapping is the 2 labeled thiapyrylium ion 82 that was postulated to result from protonation of thiacyclohexa-3,5-dien-2-ylidene (83). Calculations ([QCISD(T)/6-311þG(3df,2p)]//B3LYP/6-32(d)) indicate that 78 rearranges to 80 via ring opening to thial (84), which subsequently closes to 80.89 In a reaction analogous to the phenylcarbene rearrangement, 80 rearranges to 83 via a bicyclopropene intermediate (Eq. 45).

*C

*C

 

SS

77

78

 

 

*C

X-Cl

 

 

 

 

 

X=H,D

X

 

 

 

 

*

 

 

C

 

 

 

+

 

S

S

 

 

 

 

76

79

 

CH

*

 

 

 

 

 

 

 

 

 

H

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

C

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

C

C

 

 

 

 

 

C

 

 

 

 

S

C

S *

 

 

 

S

H

80

H

 

83

 

 

 

 

 

 

 

 

 

X-Cl

 

 

84

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

X=H,D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

+

 

 

 

 

C

C

 

 

 

 

 

 

C*

 

 

 

S

 

 

 

 

S X

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

81

 

 

82

ð45Þ

Calculations identify an additional low-energy pathway in the reaction of carbon with 76 in which 1,4-addition leads to ylid 85 followed by rearrangement to thioketone 86 (Eq. 46).89 This pathway has not been examined experimentally.

 

 

 

S

 

 

 

 

S

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S + C

 

 

C

 

 

 

 

C

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

 

86

 

 

ð46Þ

3.6.4. Reaction of Carbon Atoms with Furan. Attempts to trap oxacyclohexatriene in the reaction of arc generated C atoms with furan (87) in analogy with the reaction of carbon with 76 led to polymerization of 87, precluding identification of other products. However, reaction of chemically generated 13C atoms with 87 gave 2-penten-3-nyal (88) labeled on the 4 carbon.90 Aldehyde 88

Соседние файлы в предмете Химия