Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

REFERENCES 455

12.W. Sander, G. Bucher, and S. Wierlacher, Chem. Rev. 1993, 93, 1583.

13.M. S. Platz and V. M. Maloney, in Kinetics and Spectroscopy of Carbenes and Biradicals, M. S. Platz, Ed., Plenum, New York, 1990, pp. 239–352.

14.E. Wasserman, L. C. Snyder, and W. A. Yager, J. Chem. Phys. 1964, 41, 1763.

15.See for reviews: (a) A. M. Trozzolo, Acc. Chem. Res. 1968, 1, 329. (b) A. M. Trozzolo and E. Wasserman, in Carbenes, M. Jones, Jr. and R. A. Moss, Ed., John Wiley & Sons, Inc., New York, 1975, Vol. 2, pp. 185–206. (c) H. Tomioka, in Advances in Strain and Interesting Organic Molecules, Vol. 8, B. Halton, Ed., JAI Press, Greenwich, CT, 2000, pp. 83–112.

16.For more detail description of EPR, see, (a) A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper International, New York, 1967. (b) J. E. Wertz and J. R. Bolton, Electron Spin Resonance, McGraw-Hill, New York, 1972.

17.C. P. Poole, Jr., Electron Spin Resonance, John Wiley & Sons, Inc., New York, 1967.

18.(a) R. A. Bernheim, H. W. Bernard, S. P. Wang, L. S. Wood, and P. S. Skell, J. Chem. Phys. 1970, 53, 1280. (b) E. Wasserman, W. A. Yager, and V. Kuck, Chem. Phys. Lett. 1970, 7, 409.

19.E. Wasserman, A. M. Trozzolo, and W. A. Yager, J. Chem. Phys. 1964, 40, 2408.

20.A. M. Trozzolo, E. Wasserman, and W. A. Yager, J. Am. Chem. Soc. 1965, 87, 129.

21.(a) R. W. R. Humphreys and D. R. Arnold, Can. J. Chem. 1979, 57, 2652. (b) D. R. Arnold and W. R. Humphreys, J. Chem. Soc., Chem. Commun. 1978, 181.

22.(a) J. M. Dust and D. R. Arnold, J. Am. Chem. Soc. 1983, 105, 1221 and 6531. (b) D. D. M. Wayner and D. R. Arnold, Can. J. Chem. 1984, 62, 1164. (c) D. D. M. Wayner and D. R. Arnold, Can. J. Chem. 1985, 63, 2378.

23.Y. Hu, K. Hirai, and H. Tomioka, J. Phys. Chem. A 1999, 103, 9280; Y. Hu, Y. Ishikawa, K. Hirai, and H. Tomioka, Bull. Chem. Soc. Jpn. 2001, 74, 2207.

24.R. W. Baldock, P. Hudson, and A. R. Katritzky, J. Chem. Soc., Perkin Trans. 1 1974, 1422. (b) A. R. Katritzky, J. Chem. Soc., Perkin Trans. 1 1974, 1427.

25.(a) R. S. Hutton, M. L. Manion, H. D. Roth, and E. Wasserman, J. Am. Chem. Soc. 1974, 96, 4680. (b) R. S. Hutton and H. D. Roth, J. Am. Chem. Soc. 1978, 100, 4324. (c) H. D. Roth and R. S. Hutton, Tetrahedron 1982, 41, 1564.

26.R. S. Hutton and H. D. Roth, J. Am. Chem. Soc. 1982, 104, 7395.

27.H. Tukada, T. Sugawara, S. Maruta, and H. Iwamura, Tetrahedron Lett. 1986, 27, 235.

28.T. Koshiyama, K. Hirai, and H. Tomioka, J. Phys. Chem. A 2002, 106, 879.

29.H. Tomioka, E. Iwamoto, H. Itakura, and K. Hirai, Nature (London) 2001, 412, 626.

30.Y. Ono and W. R. Ware, J. Phys. Chem. 1983, 87, 4426.

31.D. Weir and J. C. Scaiano, Chem. Phys. Lett. 1986, 128, 156. J. C. Scaiano and A. D. Weir, Can. J. Chem. 1988, 66, 491.

32.See for reviews: (a) I. R. Dunkin, Chem. Soc. Rev. 1980, 9, 1. (b) R. S. Sheridan, Organic Photochemistry, Vol. 8, A. Padwa, Ed., Dekker, New York, 1987, pp. 159–248.

33.Z. Zhu, T. Bally, L. L. Stracener, and R. J. McMahon, J. Am. Chem. Soc. 1999, 121, 2863.

34.H. Tomioka, Bull. Chem. Soc. Jpn. 1998, 71, 1501.

35.(a) W. Sander and H. F. Bettinger, in Advances in Carbene Chemistry, Vol. 3, U. Brinker, Ed., JAI Press, Greenwich, CT, 2001, pp. 160–203. (b) W. Sander and A. Kirschfeld, in Advances in Strain and Organic Chemistry, Vol. 4, B. Halton, Ed., JAI Press, Grennwich, CT, 1995, pp. 1–80. (c) W. Sander, in Carbene Chemistry, G. Bertrand, Ed., Fontis Media

456TRIPLET CARBENES

S.A., Lausanne, 2002, pp. 1–25. (d) G. Maier and H. P. Reisenauer, in Advances in Carbene Chemistry, Vol. 3, U. Brinder, Ed., JAI Press, Greenwich, CT, 2001, pp. 116–157.

36.(a) I. Moritani, S. Murahashi, H. Asitaka, K. Kimura, and H. Tsubomura, J. Am. Chem. Soc. 1968, 90, 5918. (b) I. Moritani, S. Murahashi, N. Nishino, and H. Tsubomura,

Tetrahedron Lett. 1966, 373.

37.G. L. Closs and B. E. Rabinow, J. Am. Chem. Soc. 1976, 98, 8190.

38.See for reviews (a) R. A. Moss and N. J. Turro, in Kinetic and Spectroscopy of Carbenes and Biradicals, M. S. Platz, Ed., Plenum, New York, 1990, pp. 213–238. (b) R. A. Moss, Acc. Chem. Res. 1989, 22, 15. (c) D. Griller, A. S. Nazran, and J. C. Scaiano, Tetrahedron 1985, 41, 1525. (d) D. Griller, A. S. Nazran, and J. C. Scaiano, Acc. Chem. Res. 1984, 17, 283. (e) R. A. Moss, in Advanced in Carbene Chemistry, U. Brinker, Ed., JAI Press: Grennwich, CT, 1994, Vol. 1, pp. 60–88. (f) J. E. Jackson and M. S. Platz, in Advances in Carbene Chemistry, Vol. 1, U. Brinker, Ed., JAI Press: Greenwich, CT, 1994, pp. 90 – 160. (g) M. S. Platz, in Advances in Carbene Chemistry, Vol. 2, U. Brinker, Ed., JAI Press, Greenwich, CT, 1998, pp. 134–174. (h) J. P. Toscano, in Advances in Carbene Chemistry, Vol. 2, U. Brinker, Ed., JAI Press, Greenwich, CT, 1998, pp. 215–244.

(i)D. C. Merrer and R. A. Moss, in Advances in Carbene Chemistry, Vol. 3, U. Brinker, Ed., JAI Press, Greenwich, CT, 1998, pp. 54–114. (j) M. S. Platz, in Carbene Chemistry,

G.Bertrand, Ed., Fontis Media S. A., Lansanne, 2002, pp. 27–56.

39.(a) K. Iwata and H. Hamaguchi, Appl. Spectrosc. 1990, 44, 1431. (b) T. Yuzawa, C. Kato,

M.W. George, and H. Hamaguchi, Appl. Spectrosc. 1994, 48, 684.

40.(a) Y. Wang, T. Yuzawa, H. Hamaguchi, and J. P. Toscano, J. Am. Chem. Soc. 1999, 121, 2875. (b) Y. Wang, C. M. Hadad, and J. P. Toscano, J. Am. Chem. Soc. 2002, 124, 1761.

(c)C. M. Geise, Y. Wang, O. Mykhaylova, B. T. Frink, J. P. Toscano, and C. M. Hadad,

J.Org. Chem. 2002, 67, 3079. (d) J.-L. Wang, I. Likhotvorik, and M. S. Platz, J. Am.

Chem. Soc. 1999, 121, 2882. (e) G. C. Hess, B. Kohler, I. Likhotvorik, J. Penon, and M.

S. Platz, J. Am. Chem. Soc. 2000, 122, 8087.

41.See for reviews: (a) W. Kirmse, in Advances in Carbene Chemistry, Vol. 1, U. Brinker, Ed., JAI Press, Greenwich, CT, 1994, pp. 1–57. (b) W. Kirmse, In Advances in Carbene Chemistry, Vol. 3, U. Brinker, Ed., JAI Press: Greenwich, CT, 2001, pp. 1–51.

42.D. Bethell, J. Hayes, and A. R. Newall, J. Chem. Soc., Perkin Trans. 2 1974, 1307.

43.K. B. Eisental, N. J. Turro, E. V. Sitzmann, I. R. Gould, G. Hefferon, J. Lagan, and Y. Cha,

Tetrahedron 1985, 41, 1543.

44.B. C. Gilbert, D. Griller, and A. S. Nazran, J. Org. Chem. 1985, 50, 4738.

45.R. Alt, I. R. Gould, H. A. Staab, and N. J. Turro, J. Am. Chem. Soc. 1986, 108, 6911.

46.M. H. Sugiyama, S. Celebi, and M. S. Platz, J. Am. Chem. Soc. 1992, 114, 966.

47.L. M. Hadel, V. M. Maloney, M. S. Platz, W. G. McGimpsey, and J. C. Scaiano, J. Phys. Chem. 1986, 90, 2488.

48.For review, G. B. Schuster, Adv. Phys. Org. Chem. 1986, 22, 311.

49.S. C. Lapin, B.-E. Brauer, and G. W. Schuster, J. Am. Chem. Soc. 1984, 106, 2092.

50.S. C. Lapin and G. B. Schuster, J. Am. Chem. Soc. 1985, 107, 4243.

51.E. V. Sitzman and K. B. Eisenthal, in Applications of Picosecond Spectroscopy to Chemistry: Reidel Publishing, Dordrecht, The Netherlands, 1983, pp. 41–63.

52.(a) P. B. Grasse, B.-E. Brauer, J. J. Zupancic, K. J. Kaufman, and G. B. Schuster, J. Am. Chem. Soc. 1983, 105, 6833. (b) D. Griller, L. M. Hadel, A. S. Nazran, M. S. Platz, P. C. Wong, T. G. Savino, and J. C. Scaiano, J. Am. Chem. Soc. 1984, 106, 2227.

REFERENCES 457

53.C. Chuang, S. C. Lapin, A. K. Schrock, and G. B. Schuster, J. Am. Chem. Soc. 1985, 107, 4238.

54.(a) D. Griller, A. S. Nazran, and J. C. Scaiano, J. Am. Chem. Soc. 1984, 106, 198.

(b)D. Griller, A. S. Nazran, and J. C. Scaiano, Tetrahedron 1985, 41, 1525.

55.L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl. 1972, 11, 92.

56.(a) J. G. Langan, E. V. Sitzmann, and K. B. Eisenthal, Chem. Phys. Lett. 1984, 110, 521.

(b)E. V. Sitzmann, J. G. Langan, and K. B. Eisenthal, J. Am. Chem. Soc. 1984, 106,

1868.

57.(a) A. S. Admasu and M. S. Platz, J. Phys. Org. Chem. 1992, 5, 123. (b) M. A. GarciaGaribay, J. Am. Chem. Soc. 1993, 115, 7011. (c) M. A. Garcia-Garibay, C. Theroff, S. H. Shin, and J. Jernelius, Tetrahedron Lett. 1993, 34, 8415. (d) K. R. Motschiedler, J. P. Toscano, and M. A. Garcia-Garibay, Tetrahedron Lett. 1997, 38, 949.

58.(a) G. L. Closs and L. E. Closs, J. Am. Chem. Soc. 1969, 91, 4549. (b) G. L. Closs and A. D. Trifunac, J. Am. Chem. Soc. 1969, 91, 4554.

59.T. G. Saoino, V. P. Senthilnathan, and M. S. Platz, Tetrahedron 1986, 42, 2167.

60.W. Kirmse, L. Horner, and H. Hoffmann, Liebigs Ann. Chem. 1958, 614, 19.

61.M. Jones, Jr., W. Ando, M. E. Hendrick, A. Kulczycki, Jr., P. M. Howley, K. M. Hummel, and D. S. Malament, J. Am. Chem. Soc. 1972, 94, 7469.

¨ 1992

62. (a) W. Kirmse and I. S. Ozkir, J. Am. Chem. Soc. , 114, 7590. (b) W. Kirmse, I. S.

¨ 1993

Ozkir, and D. Schnitzler, J. Am. Chem. Soc. , 115, 792.

63.D. Bethell, A. R. Newall, and D. Whittaker, J. Chem. Soc. B. 1971, 23.

64.C. D. Gutsche, G. L. Bachman, W. Udell, and S. Ba¨uerlein, J. Am. Chem. Soc. 1971, 93, 5172.

65.See for reviews, (a) H. Fischer, Fortschr. Chem. Forsch. 1971, 24, 1. (b) H. R. Ward, Acc. Chem. Res. 1972, 5, 18. (c) R. G. Lawler, Acc. Chem. Res. 1972, 5, 25.

66.(a) R. Kaptein, J. Am. Chem. Soc. 1972, 94, 6251. (b) R. Kaptein, J. Chem. Soc., Chem. Commun. 1971, 732.

67.H. D. Roth, J. Am. Chem. Soc. 1972, 94, 1761.

68.H. D. Roth, J. Am. Chem. Soc. 1971, 93, 4935.

69.H. Iwamura, Y. Imahashi, K. Kushida, K. Aoki, and S. Satoh, Bull. Chem. Soc. Jpn. 1976, 49, 1690.

70.H. D. Roth, J. Am. Chem. Soc. 1971, 93, 1527.

71.L. M. Hadel, M. S. Platz, and J. C. Scaiano, J. Am. Chem. Soc. 1984, 106, 283.

72.R. L. Barcus, M. S. Platz, and J. C. Scaiano, J. Phys. Chem. 1987, 91, 695.

73.M. V. Encinas and J. C. Scaiano, J. Am. Chem. Soc. 1981, 103, 6393.

74.J. C. Scaiano and V. Malatesta, J. Org. Chem. 1982, 47, 1455.

75.C. Chargilialoglu, K. U. Ingold, and J. C. Scaiano, J. Am. Chem. Soc. 1981, 103, 7737.

76.L. J. Johnston, J. Lusztyk, D. D. M. Wayner, A. N. Abeywickreyma, A. L. Beckwith, J. C. Scaiano, and K. U. Ingold, J. Am. Chem. Soc. 1985, 107, 4595.

77.C. N. Bauschlicher, C. F. Bender, and H. F. III., Schaeffer, J. Am. Chem. Soc. 1976, 98, 3072.

78.J. M. Tedder, Tetrahedron 1982, 38, 3072.

79.L. H. Hadel, M. S. Platz, B. B. Wright, and J. C. Scaiano, Chem. Phys. Lett. 1984, 105, 539.

80.Y. Fujiwara, M. Sasaki, Y. Tanimoto, and M. Itoh, Chem. Phys. Lett. 1988, 146, 133.

458TRIPLET CARBENES

81.K. W. Field and G. B. Schuster, J. Org. Chem. 1988, 53, 4000.

82.G. W. Griller and K. A. Horn, J. Am. Chem. Soc. 1987, 109, 4919.

83.K. A. Horn and J. E. Chateauneuf, Tetrahedron 1985, 41, 1465.

84.Y. Fujiwara, Y. Tanimoto, M. Itoh, K. Hirai, and H. Tomioka, J. Am. Chem. Soc. 1987, 109, 1942.

85.See for reviews (a) H. Tomioka, Res. Chem. Intermed. 1994, 20, 605. (b) B. B. Wright,

Tetrahedron 1985, 41, 1517. (c) M. S. Platz, in Kinetic and Spectroscopy of Carbenes and Biradicals, M. S. Platz, Ed., Plenum, New York, 1990, pp. 143–211. (d) M. S. Platz,

Acc. Chem. Res. 1988, 21, 236.

86.R. A. Moss and U.-H. Dolling, J. Am. Chem. Soc. 1971, 93, 954.

87.(a) R. A. Moss and M. A. Joyce, J. Am. Chem. Soc. 1977, 99, 1263 and 7399. (b) R. A. Moss and J. K. Huselton, J. Am. Chem. Soc. 1978, 100, 1314. (c) R. A. Moss and M. A. Joyce, J. Am. Chem. Soc. 1978, 100, 4475. (d) T. G. Savino, K. Kanakarajan, and M. S. Platz, J. Org. Chem. 1986, 51, 1305.

88.H. Tomioka and Y. Izawa, J. Am. Chem. Soc. 1977, 99, 6128.

89.(a) H. Tomioka, S. Suzuki, and Y. Izawa, Chem. Lett. 1982, 843. (b) M. S. Platz, V. P. Senthilnathan, B. B. Wright, and C. W. McCurdy, Jr., J. Am. Chem. Soc. 1982, 104, 6494.

(c) B. B. Wright, V. P. Senthilnathan, M. S. Platz, and C. W. McCurdy, Jr., Tetrahedron Lett. 1984, 23, 833. (d) B. B. Wright and M. S. Platz, J. Am. Chem. Soc. 1984, 106, 4175.

(e)H. Tomioka, H. Okuno, and Y. Izawa, J. Chem. Soc., Perkin Trans. 2 1980, 1634.

(f)H. Tomioka, T. Inagaki, and Y. Izawa, J. Chem. Soc., Chem. Commun. 1976, 1023.

(g)H. Tomioka, T. Inagaki, S. Nakamura, and Y. Izawa, J. Chem. Soc., Perkin Trans. 1 1979, 130.

90.(a) V. P. Senthilnathan and M. S. Platz, J. Am. Chem. Soc. 1980, 102, 7637. (b) V. P. Senthilnathan and M. S. Platz, J. Am. Chem. Soc. 1981, 103, 5503. (c) C.-T. Lin and

P.P. Gaspar, Tetrahedron Lett. 1980, 21, 3553.

91.J. Ruzicka, E. Leyva, and M. S. Platz, J. Am. Chem. Soc. 1992, 114, 897.

92.B. B. Wright, K. Kanakarajan, and M. S. Platz, J. Phys. Chem. 1985, 89, 3574.

93.P. Zuev and R. S. Sheridan, J. Am. Chem. Soc. 2001, 123, 12343.

94.(a) W. Sander and C. Ko¨tting, Chem. Eur. J. 1999, 5, 24. (b) C. Ko¨tting and W. Sander,

J.Am. Chem. Soc. 1999, 121, 8891.

95.(a) W. Sander, R. Hu¨bert, E. Kraka, J. Gra¨fenstein, and D. Cremer, Chem. Eur. J. 2000, 6, 4567. (b) H. H. Wenk, R. Hu¨bert, and W. Sander, J. Org. Chem. 2001, 66, 7994.

96.W. Sander, C. Ko¨tting, and R. Hu¨bert, J. Phys. Org. Chem. 2000, 13, 561.

97.R. J. McMahon and O. L. Chapman, J. Am. Chem. Soc. 1987, 109, 683.

98.A. Admasu, M. S. Platz, A. Marcinek, J. Michalak, A. D. Gudmundsdottir, and

J.Gebicki, J. Phys. Org. Chem. 1997, 10, 207.

99.S. Wierlacher, W. Sander, and M. T. H. Liu, J. Am. Chem. Soc. 1993, 115, 8943.

100.(a) P. S. Zuev and R. S. Sheridan, J. Am. Chem. Soc. 1994, 116, 4123. (b) P. S. Zuev, R. S. Sheridan, T. V. Albu, D. G. Truhlar, D. A. Hrovat, W. T. Borden, Science 2003, 299, 867.

101.J. Bigeleisen, J. Phys. Chem. 1952, 56, 823.

102.M. W. Schaffer, E. Leyva, N. Soundararajan, E. Chang, D. H. S. Chang, V. Capuano, and

M.S. Platz, J. Phys. Chem. 1991, 95, 7273.

103.E. J. Dix, M. S. Herman, and J. L. Goodman, J. Am. Chem. Soc. 1993, 115, 10424.

104.J. W. Storer and K. N. Houk, J. Am. Chem. Soc. 1993, 115, 10426.

REFERENCES 459

105.P. D. Bartlet and T. G. Traylor, J. Am. Chem. Soc. 1962, 84, 3408.

106.M. Girard and D. Griller, J. Phys. Chem. 1986, 90, 6801.

107.K. Ishiguro, Y. Hirano, and Y. Sawaki, J. Org. Chem. 1988, 53, 5397.

108.See for reviews; (a) W. Sander, Angew. Chem., Int. Ed. Engl. 1990, 29, 344. (b) W. H. Bunnelle, Chem. Rev. 1991, 91, 335.

109.(a) G. A. Bell and I. R. Dunkin, J. Chem. Soc., Chem. Commun. 1983, 1213. (b) I. R. Dunkin and C. J. Shields, J. Chem. Soc., Chem. Commun. 1986, 154. (c) I. R. Dunkin and

G.A. Bell, Tetrahedron 1985, 41, 339.

110.R. D. Bach, J. L. Andres, A. L. Owensby, H. B. Schlegel, and J. J. W. McDouall, J. Am. Chem. Soc. 1992, 114, 7207.

111.C. Selcuki and V. Aviyente, Chem. Phys. Lett. 1998, 288, 669.

112.G. A. Ganzer, R. S. Sheridan, and M. T. H. Liu, J. Am. Chem. Soc. 1986, 108, 1517.

113.O. L. Chapman and R. S. Sheridan, J. Am. Chem. Soc. 1979, 101, 3690.

114.(a) W. Sander, A. Kirschfeld, W. Kappert, S. Muthusamy, and M. Kiselewsky, J. Am. Chem. Soc. 1996, 118, 6508. (b) W. Sander, K. Schroeder, S. Muthusamy, A. Kirschfeld,

W.Kappert, R. Boese, E. Kraka, C. Sosa, and D. Cremer, J. Am. Chem. Soc. 1997, 119,

7173.

115.D. Cremer and M. Schindler, Chem. Phys. Lett. 1987, 133, 293.

116.(a) A. M. Trozzolo, R. W. Murray, and E. Wasserman, J. Am. Chem. Soc. 1962, 84, 4990.

(b)E. Wasserman, L. Barash, and W. A. Yager, J. Am. Chem. Soc. 1965, 87, 4974.

(c)N. J. Turro, J. A. J. Butcher, and G. J. Hefferon, Photochem. Photobiol. 1981, 34, 517.

117.(a) W. Sander, J. Org. Chem. 1988, 53, 121. (b) W. Sander, J. Org. Chem. 1989, 54, 333.

(c)W. Sander, Spectrochim. Acta 1987, 43A, 637.

118.J. C. Scaiano, W. G. McGimpsey, and H. L. Casal, J. Org. Chem. 1989, 54, 1612.

119.R. L. Barcus, L. M. Hadel, L. J. Johnston, M. S. Platz, T. G. Savino, and J. C. Scaiano,

J. Am. Chem. Soc. 1986, 108, 3928.

120.Y. Fujiwara, M. Sasaki, Y. Tanimoto, and M. Itoh, Chem. Phys. Lett. 1988, 146, 133.

121.B. R. Arnold, J. C. Scaiano, G. F. Bucher, and W. W. Sander, J. Org. Chem. 1992, 57, 6469.

122.S. Morgan, M. S. Platz, M. Jones, Jr., and D. R. Myers, J. Org. Chem. 1991, 56, 1351.

123.M. T. H. Liu, R. Bonneau, and C. W. Jefford, J. Chem. Soc., Chem. Commun. 1990, 1482.

124.(a) E. A. Lissi, J. C. Scaiano, and A.-E. Villa, Chem. Commun. 1971, 457. (b) B. P. Roberts, Adv. Free Radical Chem. 1983, 6, 225–289. (c) W. G. Bentrude, in ‘‘Free Radicals,’’ Vol. 2, J. K. Kochi, Ed., John Wiley & Sons, Inc., New York, 1973, pp. 620–652.

125.H. L. Casal, N. H. Werstiuk, and J. C. Scaiano, J. Org. Chem. 1984, 49, 5214.

126.A. R. Forrester, in Landott-Bo¨rnstein, Magnetic Properties of Free Radicals, Vol. 9, Springer-Verlag, Berlin, 1979, Chapter 6.

127.N. Shimizu and S. Nishida, J. Am. Chem. Soc. 1974, 96, 6451.

128.R. M. Etter, H. S. Skovronek, and P. S. Skell, J. Am. Chem. Soc. 1959, 81, 1008.

129.P. B. Grasse, J. J. Zupancic, S. C. Lapin, M. P. Hendrich, and G. B. Schuster, J. Org. Chem. 1985, 50, 2352.

130.(a) W. Ando, H. Higuchi, and T. Migita, J. Org. Chem. 1977, 42, 3365. (b) W. Ando, K. Nakayama, K. Ichibori, and T. Migita, J. Am. Chem. Soc. 1969, 91, 5164. (c) W. Ando, S. Kondo, K. Nakayama, K. Ichibori, H. Kohda, H. Yamamoto, I. Imai, S. Nakaido, and T. Migita, J. Am. Chem. Soc. 1972, 94, 3870.

460TRIPLET CARBENES

131.(a) W. Kirmse and G. Homberger, J. Am. Chem. Soc. 1991, 113, 3925. (b) G. Homberegr,

A.E. Dorigo, W. Kirmse, and K. N. Houk, J. Am. Chem. Soc. 1989, 111, 475.

132.See for review; J. C. Scaiano, in Kinetics and Spectroscopy of Carbenes and Biradicals;

M.S. Platz, Ed., Plenum, New York, 1990, pp. 353–368.

133.E. Leyva, R. L. Barcus, and M. S. Platz, J. Am. Chem. Soc. 1986, 108, 7786.

134.N. J. Turro, M. Aikawa, J. A. Butcher, Jr., and G. W. Griffin, J. Am. Chem. Soc. 1980, 102, 5127.

135.(a) Y. Wang, E. V. Sitzmann, F. Novak, C. Dupuy, and K. B. Eisenthal, J. Am. Chem. Soc. 1982, 104, 3238. (b) E. V. Sitzmann, Y. Wang, and K. B. Eisenthal, J. Phys, Chem. 1983, 87, 2283.

136.(a) E. V. Sitzmann, J. Langan, and K. B. Eisenthal, Chem. Phys. Lett. 1983, 102, 446.

(b)K. A. Horn and B. D. Allison, Chem. Phys. Lett. 1985, 116, 114.

137.L. J. Johnston and J. C. Scaiano, Chem. Phys. Lett. 1985, 116, 109.

138.J. C. Scaiano and D. Weir, Chem. Phys. Lett. 1987, 141, 503.

139.J. C. Scaiano, M. Tanner, and D. Weir, J. Am. Chem. Soc. 1985, 107, 4396.

140.See for review; E. Migirdicyan, B. Kozankiewicz, and M. S. Platz, in Advances in Carbene Chemistry, Vol. 2, U. Brinker, Ed., JAI Press, Greenwich, CT, 1998, pp. 97–132.

141.A. Despre´s, V. Lejeune, E. Migirdicyan, A. Admasu, M. S. Platz, G. Berthier, O. Parisel,

J.P. Flament, I. Baraldi, and F. Momicchioli, J. Phys. Chem. 1993, 97, 13358.

142.K. Akiyama, S. Tero-Kubota, and J. Higuchi, J. Am. Chem. Soc. 1998, 120, 8269.

143.See for reviews (a) H. Tomioka, Acc. Chem. Res. 1997, 30, 1315. (b) H. Tomioka, in Advances in Carbene Chemistry, Vol. 2, U. Brinker, Ed., JAI Press, Greenwich, CT, 1988, pp. 175–214.

144.See for reviews (a) D. Bourissou, O. Guerret, F. P. Gabbai, and G. Bertrand, Chem. Rev. 2000, 100, 39. (b) A. J. III., Arduengo, Acc. Chem. Res. 1999, 32, 913.

145.H. E. Zimmerman and D. H. Paskovich, J. Am. Chem. Soc. 1964, 86, 2149.

146.(a) M. Regitz, Angew. Chem., Int. Ed. Engl. 1991, 30, 674. (b) R. Dagani, Chem. Eng. News 1991, Jan. 28, 19; 1994, May 2, 20. (c) C. Heinemann, T. Mu¨ller, Y. Apeloig, and H. Schwartz, J. Am. Chem. Soc. 1996, 118, 2023. (d) C. Beohme and G. Frenking,

J.Am. Chem. Soc. 1996, 118, 2039. (e) W. Kirmse, Angen. Chem. Int. Ed. 2003, 42, 2117.

147.K. Hirai, K. Komatsu, and H. Tomioka, Chem. Lett. 1994, 503.

148.H. Tomioka, H. Okada, T. Watanabe, K. Banno, K. Komatsu, and K. Hirai, J. Am. Chem. Soc. 1997, 119, 1582.

149.H. Tomioka, H. Okada, T. Watanabe, and K. Hirai, Angew. Chem., Int. Ed. Engl. 1994, 33, 873.

150.V. R. Koch and G. J. Gleicher, J. Am. Chem. Soc. 1971, 93, 1657.

151.(a) H. Tomioka, H. Mizuno, H. Itakura, and K. Hirai, J. Chem. Soc., Chem. Commun. 1997, 2261. (b) H. Itakura, H. Mizuno, K. Hirai, and H. Tomioka, J. Org. Chem. 2000, 65, 8797.

152.M. Ballester, Acc. Chem. Res. 1985, 18, 380; Adv. Phys. Org. Chem. 1989, 25, 307, 321.

153.M. Ballester, J. Riera, J. Castafier, C. Badfa, and J. M. Monso´, J. Am. Chem. Soc. 1971, 93, 2115.

154.(a) H. Tomioka, K. Hirai, and C. Fujii, Acta Chem. Scand. 1993, 46, 680. (b) H. Tomioka,

K.Hirai, and T. Nakayama, J. Am. Chem. Soc. 1993, 115, 1285.

155.R. S. Rowland and R. Taylor, J. Phys. Chem. 1996, 100, 7384.

REFERENCES 461

156.S. C. Murov, I. Carmichael, and G. L. Hug, Handbook of Photochemistry, Marcel Dekker, New York, 1993.

157.(a) H. Tomioka, T. Watanabe, K. Hirai, K. Furukawa, T. Takui, and K. Itoh, J. Am. Chem. Soc. 1995, 117, 6376. (b) H. Tomioka, M. Hattori, and K. Hirai, J. Am. Chem. Soc. 1996, 118, 8723. (c) H. Tomioka, T. Watanabe, M. Hattori, N. Nomura, and K. Hirai, J. Am. Chem. Soc. 2002, 124, 474.

158.Reviews of triarylmethyls: (a) V. D. Sholle and E. G. Rozantsev, Russ. Chem. Rev. 1973, 42, 1011; (b) J. M. McBride, Tetrahedron 1974, 30, 2009.

159.S. T. Bowden and T. F. Watkins, J. Chem. Soc. 1940, 1249.

160.(a) C. S. Marvel, W. H. Rieger, and M. B. Mueller, J. Am. Chem. Soc. 1939, 61, 2769.

(b) C. S. Marvel, M. B. Mueller, C. M. Himel, and J. F. Kaplan, J. Am. Chem. Soc. 1939,

61, 2771.

161.A. Rajca and S. Utamupanya, J. Org. Chem. 1992, 113, 2552.

162.(a) J. A. Kerr, A. W. Kirk, B. V. O’Grady, and A. F. Trotman-Dickenson, Chem. Commun. 1967, 365. (b) G. O. Pritchard, J. T. Bryant, and R. L. Thommarson, J. Phys. Chem. 1965, 69, 2804. (c) J. A. Kerr, B. V. O’Grady, and A.-F. Trotman-Dickenson,

J. Chem. Soc. A, 1961, 1621.

163.H. Tomioka and H. Taketsuji, J. Chem. Soc., Chem. Commun. 1997, 1745.

164.K. Hirai and H. Tomioka, J. Am. Chem. Soc. 1999, 121, 10213.

165. The decay curve was analyzed in terms of second-order kinetics (2k=el ¼ 1:7 10 3 s 1) in our original paper (see Ref. 164) but we found that the curve was best analyzed as a sum of two exponential decays.

166.E. Wasserman, V. J. Kuck, W. A. Yager, R. S. Hutton, F. D. Greene, V. P. Abegg, and N. M. Weinshenker, J. Am. Chem. Soc. 1971, 93, 6355.

167.(a) H. Tomioka, J. Nakijima, H. Mizuno, E. Iiba, and K. Hirai, Can. J. Chem. 1999, 77, 1066. (b) H. Itakura, and H. Tomioka, Org. Lett. 2000, 2, 2995.

168.D. J. Astles, M. Girard, D. Griller, R. J. Kolt, and D. D. M. Wayner, J. Org. Chem. 1988, 53, 6053.

169.K. Hirai, Y. Nozaki, and H. Tomioka, to be published.

170.Y. Takahashi, M. Tomura, K. Yoshida, S. Murata, and H. Tomioka, Angew. Chem., Int. Ed. Engl. 2000, 39, 3478.

171.(a) K. Itoh, Chem. Phys. Lett. 1967, 1, 235. (b) E. Wasserman, R. W. Murray, W. A. Yager, A. M. Trozzolo, and G. Smolinski, J. Am. Chem. Soc. 1967, 89, 5076.

172.See for review (a) A. Rajca, Chem. Rev. 1994, 94, 871. (b) H. Iwamura, Adv. Phys. Org. Chem. 1990, 26, 179.

173.K. Matsuda, N. Nakamura, K. Inoue, N. Koga, and H. Iwamura, Bull. Chem. Soc. Jpn. 1996, 69, 1483.

174.H. Tomioka, M. Hattori, K. Hirai, K. Sato, D. Shiomi, T. Takui, and K. Itoh, J. Am. Chem. Soc. 1998, 120, 1106.

175.K. Sonogashira, in Comprehensive Organic Synthesis, Vol. 3, B. M. Trast and I. Fleming, Eds., Pergamon Press, Oxford, 1991, pp. 521–549.

176.T. Takui, K. Sato, D. Shiomi, K. Itoh, T. Kaneko, E. Tsuchida, and H. Nishide, in Magnetism; A Supramolecular Function, O. Kahn, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, pp. 249–280.

177.K. Matsuda, K. Takahashi, K. Inoue, N. Koga, and H. Iwamura, J. Am. Chem. Soc. 1995, 117, 5550.

CHAPTER 10

Atomic Carbon

PHILIP B. SHEVLIN

Department of Chemistry, Auburn University, Auburn University, AL

1.

Historical Background and Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

464

 

1.1. Energies and Spin States in Carbon Atom Reactions . . . . . . . . . . . . . . . .

465

2.

Methods of Generating Atomic Carbon. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

465

 

2.1. Nucleogenic Carbon and Nuclear Medicine . . . . . . . . . . . . . . . . . . . . . .

465

 

2.2. Graphite Vaporization Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

466

 

2.2.1. The Carbon Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

466

 

2.2.2. Resistive Heating of Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . .

467

 

2.2.3. Laser Evaporation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . .

468

 

2.3. Atomic Carbon from Chemical Precursors . . . . . . . . . . . . . . . . . . . . . . .

468

 

2.3.1. Carbon Suboxide Photolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .

468

 

2.3.2. Cyanogen Azide Photolysis on Low-Temperature Matrices. . . . . . .

468

 

2.3.3. Diazo Compounds as Carbon Atom Precursors . . . . . . . . . . . . . . .

469

 

2.4. Production of Carbon Atoms in Molecular Beams . . . . . . . . . . . . . . . . .

470

 

2.5. Miscellaneous Methods of Generating Carbon Atoms . . . . . . . . . . . . . . .

470

3.

Reactions of Atomic Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

470

 

3.1. Overview of Carbon Atom Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . .

470

 

3.2. Reactions of Carbon Atoms with Inorganic Substrates. . . . . . . . . . . . . . .

471

 

3.2.1. Formation of Amino Acid Precursors in the Reaction

 

 

of Carbon Atoms with Ammonia. . . . . . . . . . . . . . . . . . . . . . . . .

471

 

3.2.2. Formation of Carbohydrates in the Reaction of Carbon

 

 

Atoms with Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

472

 

3.3. Reaction of Carbon Atoms with Simple C H Bonds. . . . . . . . . . . . . . . .

473

 

3.4. Reaction of Carbon Atoms with Alkenes . . . . . . . . . . . . . . . . . . . . . . . .

473

 

3.4.1. Reaction of Carbon Atoms with Cycloalkenes to Give

 

 

Cyclic Cumulenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

475

 

3.5. Halomethylidene Formation in the Reaction of Carbon Atoms

 

 

with Carbon–Halogen Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

477

 

3.6. Reaction of Carbon with Aromatic and Heteroaromatic Compounds . . . . .

479

 

3.6.1. Reaction of Carbon with Benzene and Substituted Benzenes . . . . .

479

 

3.6.2. Reaction of Atomic Carbon with Pyrrole . . . . . . . . . . . . . . . . . . .

484

Reactive Intermediate Chemistry, edited by Robert A. Moss, Matthew S. Platz, and Maitland Jones, Jr. ISBN 0-471-23324-2 Copyright # 2004 John Wiley & Sons, Inc.

463

464

ATOMIC CARBON

 

 

 

3.6.3. Reaction of Carbon Atoms with Thiophene . . . . . . . . . . . . . . . . .

485

 

 

3.6.4. Reaction of Carbon Atoms with Furan . . . . . . . . . . . . . . . . . . . . .

485

 

 

3.6.5. C H Insertion versus Double-Bond Addition in the

 

 

 

Reaction of Carbon with Aromatics . . . . . . . . . . . . . . . . . . . . . . .

486

 

3.7. Deoxygenation by Atomic Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . .

486

 

 

3.7.1. Reaction of Carbon Atoms with Alcohols and Ethers. . . . . . . . . . .

486

 

 

3.7.2. The Formation of Carbenes by Carbon Atom Deoxygenation

 

 

 

of Carbonyl Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

488

 

 

3.7.3. Phenylnitrene by the Deoxygenation of Nitrosobenzene . . . . . . . . .

492

 

3.8. Other Reactions of Carbon Atoms with Lone Pairs . . . . . . . . . . . . . . . . .

493

4.

Molecular Beam Studies of Carbon Atom Reactions . . . . . . . . . . . . . . . . . . .

493

5.

Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

494

Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

495

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

495

1. HISTORICAL BACKGROUND AND SCOPE

Many of the intermediates in organic reactions derive their high reactivity from the fact that they involve low-valent forms of carbon that exhibit a thermodynamic drive to form a tetravalent carbon. In this connection, zero valent atomic carbon can be considered the ultimate in low valent carbon centered reactive intermediates. Much of the attraction of this fascinating species results from the fact that, in its drive to form four bonds, it often traverses other reactive species such as carbines, carbenes, and free radicals.

Many of the early studies of atomic carbon involved atoms generated in nuclear reactions with the pioneering work of Wolf1 and Wolfgang2,3 dominating in these investigations. This ‘‘hot atom chemistry’’ formed the basis of the important use of 11C in nuclear medicine. In 1966, Skell et al.4 developed the use of the carbon arc to generate and study the reactions of carbon atoms and published an impressive array of papers documenting new C atom reactions. Since that time, a variety of methods of producing and investigating C atom reactions has been reported. Although the chemistry of atomic carbon has been the subject of several reviews,1–6 the last of these appeared in 1980 and it is clearly time to review the progress that has been made in this important field since that time. While this chapter will concentrate on reactions that have been reported since 1980, earlier studies will be mentioned in order to compare reactivities of C atoms generated by various methods. Although atomic carbon has been identified as an extraterrestrial species7 and numerous studies of its rate of reaction with simple molecules under extraterrestrial conditions have been reported, this aspect of C atom chemistry will not be included. This chapter will concentrate on C atom reactions in which products and intermediates have been identified and will not consider kinetic studies in detail.

METHODS OF GENERATING ATOMIC CARBON

465

1.1. Energies and Spin States in Carbon Atom Reactions

The heats of formation (in kcal/mol) of several representative neutral carbon centered reactive intermediates are listed in Eq. 1. It is not surprising that the energies of these species are inversely proportional to the number of bonds to carbon, rendering C atoms both difficult to generate and highly reactive. The energetics are further complicated by the fact that the ground state of atomic carbon is a triplet [Cð3PÞ Hf ¼ 171 kcal/mol] with two metastable singlet excited states [Cð1DÞHf ¼ 201 kcal/mol] and [Cð1SÞ Hf ¼ 233 kcal/mol]. Since many of the C atom reactions that have been reported involve the 1D state, this species brings an additional 30 kcal of energy to its reactions. Thus, C atom reactions are usually highly exothermic and generate products with a great deal of excess energy. This exothermicity is especially interesting when the initial product of a C atom reaction is another reactive intermediate. For example, when a carbon inserts into a C H bond to generate a carbene, the carbene is formed with >100 kcal/mol of excess energy. Since carbenes are themselves high-energy species, it is unusual to generate them with so much excess energy and unique reactions are possible. Such considerations will be discussed in detail below.

 

 

 

• •

H

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

H

 

C

C

C

H

C

H

ð1Þ

 

 

 

 

 

H H

H H

 

 

171 kcal

141 kcal

92 kcal

35 kcal

 

 

 

H

 

-18 kcal

 

2. METHODS OF GENERATING ATOMIC CARBON

2.1. Nucleogenic Carbon and Nuclear Medicine

As mentioned above, the first studies of C atom reactions involved the generation of

this species by nuclear reactions. Reactions that have been used include

14N(n,p) 14C,8 12C(n,2n) 11C,9 12C(g,n) 11C,10 14N( p,a) 11C,11 12C( p,pn) 11C,12

10B(d,n) 11C,13 and 11B( p,n) 11C.13 Since yields in these nuclear reactions are low, only highly sensitive radiochromatographic techniques can be used to identify the products of the C atom reactions. The technique takes advantage of the fact that these reactions generate either 14C or 11C, both of which are radioactive. The fact that only products that retain the reacting C atom can be identified is a drawback to this method from a mechanistic standpoint. However, an impressive number of substrates has been investigated and products are generally similar to those from C atoms generated by other methods. The fact that reactions of these nucleogenic C atoms often generate products containing 11C has found considerable practical advantage in nuclear medicine.14 Since 11C is a positron emitter, it can be counted in the body with noninvasive positron emission tomography (PET) techniques. The use of 11C in nuclear medicine generally involves the production of a simple molecule such as 11CO, 11CO2, or 11CN . These labeled species are then incorporated

Соседние файлы в предмете Химия