Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

1002 THE PARTNERSHIP BETWEEN ELECTRONIC STRUCTURE CALCULATIONS

24.For examples see (a) D. A. Plattner and K. N. Houk, J. Am. Chem. Soc. 1995, 117, 4405;

(b)A. Karpfen, C. H. Choi, and M. Kertesz, J. Phys. Chem. A 1997, 101, 7426; and

(c)Footnote 25 in D. A. Hrovat, J. Chen, K. N. Houk, and W. T. Borden, J. Am. Chem. Soc. 2000, 122, 7456.

25.(a) R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 1998, 109, 8218;

(b)M. E. Casida, C. Jamorksi, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 1998,

108, 4439.

26.For a recent application of TDDFT to the identification of an RI see A. C. Goren, D. A. Hrovat, M. Seefelder, H. Quast, and W. T. Borden, J. Am. Chem. Soc. 2002, 124, 2469.

27.T. Bally, D. A. Hrovat, and W. T. Borden, Phys. Chem. Chem. Phys. 2000, 2, 3363.

28.T. Bally and G. N. Sastry, J. Phys. Chem. A 1997, 101, 7923.

29.(a) W. T. Borden, N. P. Gritsan, C. M. Hadad, W. L. Karney, C. R. Kemnitz, and

M.S. Platz, Acc. Chem. Res. 2000, 33, 765; (b) W. R. Karney and W. T. Borden, in

U.H. Brinker, Ed., Advances in Carbene Chemistry, Vol. 3, Elsevier, Amsterdam, The Netherlands, 2001, pp. 206–251.

30.(a) S.-J. Kim, T. P. Hamilton, and H. F. Schaefer, J. Am. Chem. Soc. 1992, 114, 5349;

(b) D. A. Hrovat, E. E. Waali, and W. T. Borden, J. Am. Chem. Soc. 1992, 114, 8698.

31.P. C. Engelking and W. C. Lineberger, J. Chem. Phys. 1976, 65, 4323.

32.M. J. Travers, D. C. Cowles, E. P. Clifford, G. B. Ellison, and P. C. Engelking, J. Phys. Chem. 1999, 111, 5349.

33.(a) M. J. Travers, D. C. Cowles, E. P. Clifford, and G. B. Ellison, J. Am. Chem. Soc. 1992, 114, 8699. (b) R. N. McDonald and S. J. Davidson, J. Am. Chem. Soc. 1993, 115, 10857.

34.(a) S. Matzinger, T. Bally, E. V. Patterson, and R. J. McMahon, J. Am. Chem. Soc. 1996, 118, 1535. (b) M. W. Wong and C. Wentrup, J. Org. Chem. 1996, 61, 7022.

(c) P. R. Schreiner, W. L. Karney, P. v. R. Schleyer, W. T. Borden, T. P. Hamilton, and H. F. Schaefer, J. Org. Chem. 1996, 61, 7030.

35.W. L. Karney and W. T. Borden, J. Am. Chem. Soc. 1997, 119, 1378.

36.W. L. Karney and W. T. Borden, J. Am. Chem. Soc. 1997, 119, 3347.

37.(a) N. P. Gritsan, A. D. Gudmundsdo´ttir, D. Tigelaar, and M. S. Platz, J. Phys. Chem. A 1999, 103, 3458. (b) N. P. Gritsan, D. Tigelaar, and M. S. Platz, J. Phys. Chem. A 1999, 103, 4465; (c) N. P. Gritsan, A. D. Gudmundsdo´ttir, D. Tigelaar, Z. Zhu, W. L. Karney,

C.M. Hadad, and M. S. Platz, J. Am. Chem. Soc. 2001, 123, 1951, and references cited therein.

38.(a) N. P. Gritsan, I. Likhotvorik, M.-L. Tsao, N. C¸ elebi, M. S. Platz, W. L. Karney,

C.R. Kemnitz, and W. T. Borden, J. Am. Chem. Soc. 2001, 123, 1425. (b) For a combined

computational-experimental study by our group and Platz’s of the rearrangement of ortho-biphenylnitrene, see M.-L. Tsao, N. Gritsan, T. R. James, M. S. Platz, D. A. Hrovat, and W. T. Borden, J. Am. Chem. Soc. 2003, 125, 9343.

39.X. Li, D. L. Lei, M. Y. Chiang, and P. P. Gaspar, J. Am. Chem. Soc. 1992, 8526.

40.J. M. Galbraith, P. P. Gaspar, and W. T. Borden, Am. Chem. Soc. 2002, 1234, 11669.

41.P. E. Eaton, Angew. Chem. Int. Ed. Engl. 1992, 31, 1421.

42.P. E. Eaton, C.-X. Yang, and Y. Xiong, J. Am. Chem. Soc. 1990, 112, 3225.

43.(a) R. M. Moriarity, M. T. Sudersan, R. Penmasta, and A. K. Awasthi, J. Am. Chem. Soc. 1990, 112, 3225; (b) D. N. Kevill, M. J. D’Souza, R. M. Moriarity, M. T. Sudersan, R. Penmasta, and A. K. Awasthi, J. Chem. Soc. Chem. Commun. 1990, 623.

REFERENCES 1003

44.P. E. Eaton and J. P. Zhou, J. Am. Chem. Soc. 1992, 114, 3118.

45.D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc. 1990, 112, 3227.

46.See, for example, W. J. Hehre, L. Radom, P. von R. Schleyer, and J. A. Pople, ‘‘Ab Initio Molecular Orbital Theory,’’ Wiley-Interscience, New York, 1986, pp. 379–396.

47.For examples see: (a) M. L. McKee, J. Phys. Chem. 1986, 90, 4908; (b) W. Koch, B. Liu, and D. J. DeFrees, J. Am. Chem. Soc. 1988, 110, 7325; (c) M. Saunders, K. Laidig,

K.B. Wiberg, and P. von R. Schleyer, J. Am. Chem. Soc. 1988, 110, 7652. (d) E. W. Della,

P.M. W. Gill, and C. H. Schiesser, J. Org. Chem. 1988, 53, 4354.

48.(a) O. Weist, K. A. Black, and K. N. Houk, J. Am. Chem Soc. 1994, 116, 10336; (b) H. Jiao and P. Von R. Schleyer, Angew. Chem. Int. Ed. Engl. 1995, 34, 334.

49.A. G. Martinez, E. T. Vilar, J. O. Barcina, and S. M. Cerero, J. Am. Chem Soc. 2002, 124, 6676.

50.K. Hassenru¨uck, J. G. Radziszewski, V. Balaji, G. S. Murthy, A. J. McKinley, D. E. David,

V.M. Lynch, H.-D. Martin, and J. Michl, J. Am. Chem. Soc. 1990, 112, 873.

51.D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc. 1990, 112, 875.

52.E. W. Della, N. J. Head, P. Mallon, and J. C. Walton, J. Am. Chem. Soc. 1992, 114, 10730.

53.W. A. Pryor, W. H. Davis, Jr., and J. P. Stanley, J. Am. Chem. Soc. 1973, 95, 4754; and the many book chapters and reviews referenced in this paper.

54.D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc. 1994, 116, 6459.

55.(a) L. D. Pedersen and J. A. Berson, J. Am. Chem. Soc. 1975, 97, 238; (b) J. A. Berson,

L.D. Pedersen, and B. K. Carpenter, J. Am. Chem. Soc. 1976, 98, 122. See also,

(c)S. J. Cianciosi, N. Ragunathan, T. R. Freedman, L. A. Nafie, and J. E. Baldwin, J. Am. Chem. Soc. 1990, 112, 8204.

56.S. J. Cianciosi, N. Ragunathan, T. R. Freedman, L. A. Nafie, D. K. Lewis, D. A. Glenar, and J. E. Baldwin, J. Am. Chem. Soc. 1991, 113, 1864.

57.R. Hoffmann, J. Am. Chem. Soc. 1968, 90, 11475.

58.Reviews: (a) J. J. Gajewski, Hydrocarbon Thermal Isomerizations, Academic Press: New York, 1981, pp. 27–35; (b) J. A. Berson, in Rearrangements in Ground And Excited States, Vol. 1, P. de Mayo, Ed., Academic Press, New York, 1980, pp. 311–390.

59.See footnote 28 of Ref. 60.

60.S. J. Getty, E. R. Davidson, and W. T. Borden, J. Am. Chem. Soc. 1992, 114, 2085.

61.J. E. Baldwin, Y. Yamaguchi, and H. F. Schaefer, III, J. Phys. Chem. 1994, 98, 7513.

62.C. Doubleday, Jr., K. Bolton, and W. L. Hase, J. Am. Chem. Soc. 1997, 119, 5251.

63.D. A. Hrovat, S. Fang, W. T. Borden, and B. K. Carpenter, J. Am. Chem. Soc. 1997, 119, 5253.

64.Review: W. T. Borden, Chem. Commun. 1998, 1919.

65.S. J. Getty, D. A. Hrovat, and W. T. Borden, J. Am. Chem. Soc. 1994, 116, 1521.

66.S. J. Getty, D. A. Hrovat, J. D. Xu, S. A. Barker, and W. T. Borden, J. Chem. Soc. Faraday Trans. 1994, 90, 1689.

67.F. Tian, S. B. Lewis, M. D. Bartberger, W. R. Dolbier, Jr., and W. T. Borden, J. Am. Chem. Soc. 1998, 120, 6187.

68.A. Skancke, D. A. Hrovat, and W. T. Borden, J. Am. Chem. Soc. 1998, 120, 7079.

1004 THE PARTNERSHIP BETWEEN ELECTRONIC STRUCTURE CALCULATIONS

69.V. F. Mironove, V. V. Shcherbinin, N. A. Viktorov, and V. D. Sheludyakov, Zh. Obshch. Khim. 1975, 45, 1908.

70.(a) J. J. Gajewski and M. J. Chang, J. Am. Chem. Soc. 1980, 102, 7542; (b) J. J. Gajewski,

R.J. Weber, and M. J. Chang, J. Am. Chem. Soc. 1979, 101, 2100.

71.W. T. G. Johnson, D. A. Hrovat, and W. T. Borden, J. Am. Chem. Soc. 1999, 121 7766.

72.J. D. Xu, D. A. Hrovat, and W. T. Borden, J. Am. Chem. Soc. 1994, 116, 4888.

73.W. Adam, W. T. Borden, C. Burda, H. Foster, T. Heidenfelder, M. Heubes, D. A. Hrovat,

F.Kita, S. B. Lewis, D. Scheutzow, and J. Wirz, J. Am. Chem. Soc. 1998, 120, 593

74.(a) M. P. Conrad, R. M. Pitzer, and H. F. Schaefer, J. Am. Chem. Soc. 1979, 101, 2245;

(b) C. D. Sherrill, E. T. Seidl, and H. F. Schaefer, J. Phys. Chem. 1992, 96, 3712.

75. (a) S. L. Buchwalter and G. L. Closs, J. Am. Chem. Soc. 1975, 97, 3857.

(b)S. L. Buchwalter and G. L. Closs, J. Am. Chem. Soc. 1979, 101, 4688.

76.(a) F. D. Coms and D. A. Dougherty, Tetrahedron Lett. 1988, 29, 3753; (b) W. Adam, S. Grabowski, H. Platsch, K. Hannemann, J. Wirz, and M. Wilson, J. Am. Chem. Soc. 1989, 111, 751; (c) F. D. Coms and D. A. Dougherty, J. Am. Chem. Soc. 1989, 111, 6894;

(d)W. Adam, H. Platsch, and J. Wirz, J. Am. Chem. Soc. 1989, 111, 6896.

77.M. Abe, W. Adam, T. Heidenfelder, W. M. Nau, and X. Zhang, J. Am. Chem. Soc. 2000, 122, 2019.

78.M. Abe, W. Adam, M. Hara, M. Hattori, T. Majima, M. Nojima, K. Tachibana, and S. Tojo, J. Am. Chem. Soc. 2002, 124, 6450.

79.W. T. G. Johnson, D. A. Hrovat, A. Skancke, and W. T. Borden, Theor. Chem. Acc. 199, 102, 207.

INDEX

Ab initio techniques

heterocyclic planar tetramethyleneethane (TME) derivatives, 188–191

nitrenium ions, singlet-state rearrangement and elimination, 620–621

organic radical ions

bimolecular reactions, 247–250 future research applications, 261–262 s donors, 219–221

strained ring cations, 222–228 stable ion chemistry, 7–8

strain energy calculations, 719–721 tetramethylenebenzene (TMB), 186 trimethylenemethane (TMM), ring closure

chemistry, 176 Absolute rate

biradical cycloaddition, 2- methylenecyclopentane,1,3-diyls, 180

singlet carbenes

activation parameters, 285–289 addition reactions, 285–289

triplet carbenes, laser flash photolysis, 409 Absorption band intensity, picosecond systems,

879–880 Absorption spectroscopy

matrix isolation, 828–830

radical identification/characterization, 133–134

Abstraction-recombination insertion single bond silylene insertions, 670–671

singlet carbenes, intermolecular reactions, 297–302

triplet carbenes, 404

hydrogen atom tunneling, 414–416 Acetone radical cation

femtosecond time scale, Norrish I intermediate, 912–914

potential energy surfaces (PES), reactive intermediate dynamics, 950–952

Acetonitrile adducts, organic radical ions, bimolecular reactions, 256

Acetylenes

carbon atom reactivity with, 494 silylene-germylene insertion reactions,

675–677

Acetylenic silene, isomerization, 667–668 N-Acetyl-2-fluorenylnitrenium ion, DNA

damaging mechanisms, 642–644 N-Acetylphenylnitrenium ion, electronic

configuration, 609–611 o-Acetylphenylnitrene, azirine cyclization,

535–536

Acetyl radical, femtosecond time scale, Norrish I intermediate, 913–914

Acid anhydrides, matrix isolation, 817–818 Acid dissociation constants, carbon acidity-

carbanion basicity, 76–79 condensed-phase measurements, 87–88

DMSO acidity, 88–90 ion-pair acidities, 91–93 kinetic acidity, 94–96

Acidity function techniques, carbocation research, 4

Activation parameters

alkoxycarbene fragmentation, 318–319 diarylgermylene synthesis, 694 diphenylcarbenes, laser flash photolysis,

409–413 singlet carbenes

addition reactions, 285–289 intramolecular insertion reactions,

304–306

Active electrons, CASSCF/CASPT2 calculations, 976–977

‘‘Active oxygen’’ intermediates, radical identification/characterization, 127

Acyclic bis(diisopropylamino)carbene, transition metal catalysis, 361–362

Reactive Intermediate Chemistry, edited by Robert A. Moss, Matthew S. Platz, and Maitland Jones, Jr. ISBN 0-471-23324-2 Copyright # 2004 John Wiley & Sons, Inc.

1005

1006 INDEX

Acyclic ethers, carbon atom deoxygenation, 487– 488

Acyclic radicals, structural properties, 122–123 Acylalkyl diradicals, femtosecond time scale

cyclobutanone photolysis, 914 Norrish I intermediate, 913–914

Acylium ion, protic solvent lifetimes, 21 Acylnitrenes

future research, 552

nanosecond time-resolved infrared (TRIR) spectroscopy, 551–552

structural properties, 511–520

Acyl nucleophilic substitution, carbanion intermediates, 110–111

Acylolefin condensation, organic radical ion reactions, like charge radical ions, 260–261

Acyl radical, structure, 123

Adamantanes, singlet carbenes, intermolecular insertion reactions, 302

Adamantanethione, silylene multiple bond additions, 681–683

Adamantanone, silylene multiple bond additions, 681–683

Adamantyl, singlet carbenes, 278–279 1-Adamantyl cation, skeletal rearrangement, 8–9 2-Adamantyl cation, skeletal rearrangement, 8–9 Addition reactions

carbanion intermediates, 101–104 nucleophilic additions to alkenes, 101–103 nucleophilic aromatic substitution, 103–104

heterolytic radicals, 153 homolytic radicals, 148–151

radical structures, addition-elimination reactions, 155–156

singlet carbenes overview, 274 philicity, 279–287

rates and activation parameters, 285–289 stepwise vs. concerted addition, 291–297 transition state symmetry, 289–291

Adenine, nitrenium ions, DNA damaging mechanisms, 641–644

Aggregates

carbanion intermediates, 112 matrix isolation, 802

Alcohols

carbon atom deoxygenation, 486–488 organic radical ions, protic, ionic, and polar

solvents, 254–256

single bond silylene insertions, 669–671 Aliphatic carbon, nucleophilic substitution

stepwise vs. single step reaction mechanisms, 41–43

tertiary carbon

reaction mechanisms, 59–62 solvent/solvation, 62–65

Alkali metal atoms, reactive intermediate generation, reagent cocondensation, 813

Alkanes

carbon acidity-carbanion basicity, sp3 carbanions, hybridized C–H bonds, 80–86

organic radical ions

long-chain radical cations, 206 s donors, 219–221

Alkenes

arylnitrenium ion additions, p nucleophiles, 627–628

carbon atom reactivity, 473–477 Diels-Alder reactions, trimethylenemethane

(TMM) derivatives, 180 double bond additions, 432–434

homolytic radical additions, 148–151 nucleophilic additions, carbanion intermediates,

101–103 organic radical ions

anionic radical reactions, 256–259 bimolecular reactions, 246–250 intra-pair reactions, 243–246

n donors, 218

nucleophilic capture, 257–259 p-donors, 215–218

protic, ionic, and polar solvents, 251–256 singlet carbene addition

carbene mimics, 311–314 intramolecular insertion reactions,

305–306 philicity, 279–285

rate constants and activation parameters, 285–289

transition state symmetry, 289–291 tetramethylenebenzene (TMB), 187 triplet carbenes

double bond additions, 432–434 hydrogen atom tunneling, 413–416

Alkoxycarbenes, fragmentation, 317–319 Alkoxychlorocarbenes, fragmentation, 319 Alkoxydisilanes, pyrolysis, 652–654

Alkoxyl radicals, homolytic cleavage, 152–153 Alkyl acyloxy radicals, homolytic fragmentation,

152–153

N-Alkylanthranilium ions, photochemical initiation, 615–618

Alkylarylplumbylene, 700 Alkyl azides

alkylnitrenes, 508–511 photolysis, 552

Alkyl bromide, chain reaction sequence, 135–136

velocity measurements, 137–138 Alkylcarbenes

intramolecular insertion reactions, 302–306 stable singlet carbenes, electronically active heteroatomic substituents, 345–347 time-resolved ultraviolet-vis (TRUV-Vis),

393–394 Alkyl halide

radical closed-shell structures, electron transfer, 143–144

radical propagation

homolytic halogen/chalcogen transfer, 147–148

homolytic hydrogen atom transfer, 146 single bond silylene insertions, 670–671

2-Alkylidenecyclopentane-1,3-diyls, electron spin resonance (ESR), 180

Alkylidene nitrenium ions, spectroscopic analysis, 632

Alkylidene siliranes, silylene multiple bond addition, 678–680

Alkylidenetelluragermirane, 695–696 Alkylidenethiagermirane, 683 Alkylidenes, carbene synthesis, 570–572 Alkylnitrenes

future research, 552 nitrene esters, 515–517

phosphorylnitrenes, 518–520 structural properties, 507–511 sulfonylnitrenes, 517–518

Alkylnitrenium ions, electronic configuration, 603–606

Alkylpolysilanes, photolysis, 655–656 Alkyl radicals

heterolytic fragmentation, 155

organic radical ions, anionic radical reactions, 257–259

Alkyls

triplet diphenylcarbene protection, 441–444 1,2-Alkyls, nitrenium ions, singlet-state

rearrangement/elimination, 619–621 Alkynes, organic radical ions

bimolecular reactions, 248–250

protic, ionic, and polar solvents, 250–256 Allenes

carbon-alkene reactions, 474 carbon atom reactions, 493–494

Allothreonine, carbon atom reactions, 472 Allylation reactions

addition-elimination reactions, 155–156 organic radical ions

INDEX 1007

anionic radical reactions, 257–258 protic, ionic, and polar solvents,

252–256

‘‘Allyl leaving-group,’’ silyl cations, 32 Allyloxydimethylsilane, single bond silylene

insertions, 671–673 Allyloxymethoxycarbenes, fragmentation,

317–319

Allyl radical, structure, 123

AM1-SRP technique, potential energy surfaces (PES)

1,2,6-heptatriene rearrangement, 953 molecular dynamics (MD), 945–947 vinylcyclopropane rearrangement, 950

Ambient temperature, diarylgermylene synthesis, 694

Ambiphiles, singlet carbenes

addition reaction rate constants and activation parameters, 286–289

philicity, addition reaction, 281–285 Amines

carbocation reactivity, nucleophilic addition, 26–28

nitrenium ion generation, electrochemical oxidation, 618–619

Amino acid precursors, carbon atom reactivity, ammonia and formation of, 471–472

Aminocarbene, ammonia reactions, 471–472 Amino groups

singlet carbenes, addition rate constants and activation parameters, 288–289

stable singlet carbenes dimerization reactions, 349–350 Lewis acids and bases reactions,

355–358

single electronically active heteroatomic substituents, 342–347

1,2-Amino-migration product, stable singlet carbenes, 345–347

Aminonitrenes

stable compounds, 547

structural characterization, 545–547 (Amino)(phosphino)carbene, Lewis acids and

bases reactions, 358 N-Aminopyridinium ion, nitrenium ion

generation, 614 photochemical initiation, 617–618

Aminosilene, isomerization, 668 Aminyl radicals, imidogen, 506 Ammonia, carbon atom reactions, amino

acid precursors, 471–472 Anionic structures

imidogen, 503–506

1008 INDEX

Anionic structures (Continued) organic radical ions

chemical properties, 206–209 p donors, 215–218

reactive intermediates, 256–259 structural analysis, 214–215

radical cations, matrix isolation, 822–823 tetramethyleenethane, 183

Anisole, benzene-carbon atom reactivity, 482–484

Annealing reactions, triplet carbenes, zero-field splitting, 390

Annellated arynes, 764–773 didehydroindenes, 769–773 naphthynes, 764–769

[4þ3]Annulation, Fischer-type carbenes, 580

Anthronylidene

laser flash photolysis, 412–413

triplet carbenes, hydrogen abstraction, laser flash photolysis (LFP), 413

Antiaromaticity p-benzyne, 754–759

carbon acidity-carbanion basicity, sp3 carbanions, hybridized C–H bonds, 86

Antibonding interactions, singlet carbenes, 277–279

Anti-Bredt olefins, matrix isolation, 825 Anti-Markovnikov addition, organic radical ions,

protic, ionic, and polar solvents, 251–256 Antisymmetrized wave function, electronic

structure calculations, 968 Arenes, organic radical ions

anionic radical reactions, 256–259 bimolecular reactions, 247–250

n donors, 218

proton donors, 250–256

(þ)-Aristraline, ring closing metathesis (RCM), 581

Aromatic 10-p-dianion, organic radical ions, like charge reactions, 261

Aromatic hydrocarbons carbon atom reactivity

benzene/substituted benzene, 479–484 carbon–hydrogen bond insertion vs.

double-bond addition, 486 pyrroles, 484

nucleophilic substitution, carbanion intermediates, 103–104

phenyl migrations, 106–107

organic radical cations, p-donor, 215–218 organic radical ions, bimolecular reactions,

246–250

stable singlet carbenes, single electronically active heteroatomic substituents, 342–347

Aromaticity

carbanion basicity-carbon acidity, 85–86 hetarynes, 777–782

Aromatic ring parameter, aliphatic nucleophilic substitution, tertiary carbons, solvent participation and nucleophilic solvation, 63–65

Aromatic substitution, carbene synthesis, 579 Aroylazides, carboethoxynitrene, 516–517 Arrhenius parameters

intramolecular tunneling reactions, 419–421 triplet carbenes

hydrogen abstraction, laser flash photolysis (LFP), 409–413

hydrogen atom transfer kinetics, 416–417 Aryl-aryl repulsion, persistent triplet carbenes,

440–441 Aryl(arylthio)plumbylene, 700 Aryl azides

nitrenium ions, photochemical initiation, 615–618

phenylnitrene, 524

azirine cyclization, 534–536 Arylcarbenes

hydrogen atom tunneling, 415–416 phenylnitrene, intersystem crossing, 531–532 singlet-triplet separation, 522

Arylcarbomethoxycarbene, intermolecular insertions, 299–302

Arylhalocarbenes, addition rate constants and activation parameters, 288–289

Arylmethyl radicals, triplet diphenylcation protection, 444

Arylnitrenes

azobenzene formation, 517 carboethoxynitrene, 516–517 phenylnitrene, para-substituted singlet

derivatives, 532–533 phosphorylnitrene comparison, 519–520 polycyclic arylnitrenes

biphenylnitrenes, 543–544 naphthylnitrenes, 540–543 structural characterization, 540–544

structural chemistry, 522–523 Arylnitrenium ions

computational studies, 606–611 DNA damaging reactions, 640–644 singlet-state reactions, p nucleophiles,

627–628

Arylphosphinidines, characterization, 550–551 Aryl radicals, heterolytic radical additions, 153

Arynes

annellated arynes, 764–773 didehydroindenes, 769–773 naphthynes, 764–769

basic properties, 741–742 cyclo[6]carbon, 784 heterocyclic arynes, 773–782 parent benzynes, 742–759

m-benzynes, 747–752 o-benzynes, 742–747 p-benzynes, 752–759 substituted arynes, 759–764 m-benzynes, 760–762 o-benzynes, 759–760 p-benzynes, 762–764

Aspartic acid, carbon atom reactions, 471–472 (þ)-Aspicilin, ring closing metathesis

(RCM), 581

Asymmetry, singlet carbene addition, transition state symmetry, 289–291

Atomic carbon. See Carbon atoms Atomic orbitals (AOs)

electronic structure calculations, 970–973 singlet carbenes, structure and bonding,

275–279 Atom transfer

nitrenium ions, hydrogen atom transfer, 629– 631

organic radical ions, intra-pair reactions, 239– 246

radical structures, homolytic reactions, 145–148 halogens and chalcogens, 146–148 hydrogen atoms, 145–146

triplet carbenes, hydrogen abstraction kinetics, 416–417

product studies, 402–405

tunneling reactions, elevated temperatures, 422 a values, electron spin resonance (ESR), radical

compound identification, 128 Avoided crossings, potential energy surfaces

(PES), conical intersections, 934–937 Axial symmetry, non-Kekule´ molecules, ESR

zero-field splitting, 172–173 1-Aza-1,2,4,6-cycloheptatetraene, ring expansion

reactions, electronic structure calculations, 982–985

Azacycloheptatetraene nitrosobenzene deoxygenation, 492 phenylphosphinidine, 549–550

Azepine, phenylnitrene, 523–525 Azide ion clock

carbocation reactivity, 18 electron-withdrawing substituents, 29–30

INDEX 1009

nitrenium ions, spectroscopic analysis, 632–634

nucleophilic substitution, 1-phenylethyl derivatives (X-1-Y), 46–47

Azide ions

aliphatic nucleophilic substitution, tertiary carbons, 60–62

carbocation reactivity, 16 nitrenium ion generation, 612–614

nucleophilic substitution, benzylic carbon basic principles, 44

borderline reactions, 53–58 benzyl derivatives, 57–58 X-1-Y substitutions, 53–55 X-2-Y substitutions, 55–57

concerted reaction mechanism, coupling and, 51–53

More O’Ferrall diagrams, 48–50 ring-substituted 1-phenylethyl derivatives,

44–47

ring-substituted cumyl derivatives, 47–48

stepwise ionization/trapping, liberated reaction intermediate, 50

stepwise preassociation, 50–51 Azides

biphenylnitrenes, 543–544 matrix isolation, 815–816

Azidomethylsilane, isomerization, 668 1-Azidonorbornane, alkylnitrenes, 508–511 o-Azidobiphenyl, biphenylnitrenes, 543–544 Aziridation reactions, metal nitrenes, organic

synthesis, 583–586

Aziridines, carbon-lone pair reactions, 493 Azirines

acylnitrenes, 513–514 biphenylnitrenes, 543–544

fluoro-substituted phenylnitrenes, 536–538 naphthylnitrenes, 541–543, 542–543 oxonitrenes, 547

phenylnitrene, 523–525 computational chemistry, 527–528 cyclization reactions, 534–536

Azobisisobutyryl-nitrile (AIBN) chain reaction sequence, velocity

measurements, 137–138

radical chain reaction sequence, 134–135 radical initiation

photolysis, 142–143 thermolysis, 140–142

Azo compounds, matrix isolation, 818 Azonaphthalene, naphthylnitrenes, 542–543 Azulyne, 785

1010 INDEX

B3LYP/6-31G calculations matrix isolation, 833–836 singlet carbenes

intermolecular insertion reactions, 302 philicity, additions, 283–285 structure and bonding, 275–279 transition state symmetry, 290–291

triplet carbenes

electronic effects, 379–380 hydrogen atom tunneling, 417–419

wave function calculations

DFT calculations vs., 979–981 functionals, 979

Back electron transfer (BET) organic radical ions

cation reactive intermediates, 236 intra-pair reactions, 239–246

stable singlet carbenes, transition metal catalysis, 359–362

(R)-(–)Baclofen, carbene insertion reactions, 577

Baeyer strain theory, basic principles, 718 Bamberger rearrangement, nitrenium ions,

599–600

Barbaralane, radical cations, 229

Baron mechanism, phenylcarbene rearrangement, incarcerated carbene chemistry, 316–317

Barrier-to-ring closure, cyclopentane-1,3-diyl ground state calculations, 997

Barton-McCombie deoxygenation reaction, group transfer reactions, 156

Barton reaction, nonchain radical reaction sequence, 139–140

Basicity properties, carbanions, 76–97 carbon acidity measurements

bond strengths, 96–97 condensed-phase measurements, 87–96

DMSO acidity, 88–90 gas-phase acidity, 93–94 ion-pairing, 90–93 kinetic acidity, 94–96

definitions and methodologies, 76–79 sp2 and sp hybridized C–H bonds, 86–87 sp3 hybridized C–H bonds, 79–86

Basis function

LCAO-MO approximation, 971–973

wave function vs. DFT calculations, 979–981 Basis reaction, radical structures, kinetic studies,

127–128

Basis set calculations, LCAO-MO approximation, 971–973

Bathochromic shifts, organic radical ions, 212 Benzaldoxine, oxonitrenes, 547

Benzannulation, carbene synthesis, 568–569

Benzazirine

nanosecond time-resolved infrared (TRIR) spectroscopy, 551–552

phenylnitrene, 524–525 azirine cyclization, 534–536

computational chemistry, 528 singlet dynamics, 531

phenylphosphinidine, 549–550 Benzdiynes, 782–784

Benzene

carbon atom reactivity with, 478–484 molecular beam studies, 493–494

femtosecond time scale, 911 organic radical ions

bifunctional/distonic radical ions, 232–234

bimolecular reactions, 247 p-donors, 215–218

overcrowded diarylsilylenes, 688–689 singlet carbenes, carbene mimics, 314 triplet carbenes, halogen-protected

diphenylcarbenes, 447 Benzenium ion, superacid formation, 15 Benzhydryl azides, nitrenium ions, 600

Benzo[a]pyrene, carbocation reactivity, 33–34 Benzocyclobutene

persistent triplet carbenes, 440–441 phenylcarbene rearrangement, incarcerated

carbene chemistry, 316–317

triplet diphenylcation protection, 443–444 Benzocyclopropene, phenylnitrene computational

chemistry, 527–528

Benzophenone, nanosecond laser flash photolysis, 853–858

Benzophenone oxide

laser flash photolysis, 429

triplet carbene oxygen reactions, 423 Benzoylnitrene, singlet ground state, 515 Benzvalene, organic radical ions, strained ring

cations, 226–228 Benzylchlorocarbene

carbene mimics, 311–314

singlet carbenes, intramolecular insertion reactions, 305–306

triplet carbenes, intramolecular hydrogen tunneling, 420–421

Benzyl derivatives

nucleophilic substitution, 57–58 protic solvent lifetimes, 21

Benzyldimethylsilane, organic radical ions, anionic radical reactions, 258–259

Benzylic carbon, nucleophilic substitution, azide ions

basic principles, 44 borderline reactions, 53–58

benzyl derivatives, 57–58 X-1-Y substitutions, 53–55 X-2-Y substitutions, 55–57

concerted reaction mechanism, coupling and, 51–53

More O’Ferrall diagrams, 48–50 ring-substituted 1-phenylethyl derivatives,

44–47

ring-substituted cumyl derivatives, 47–48 stepwise ionization/trapping, liberated reaction

intermediate, 50

stepwise preassociation, 50–51 Benzylic cations

carcinogenesis, 33–34 electron-withdrawing substituents, 29–30

Benzylic resonance, triplet carbenes, hydrogen abstraction, 405

Benzylic stabilization, triplet carbene double bond additions, 434

Benzyloxychlorocarbene, fragmentation, 318–319

Benzyloxymethoxycarbene, fragmentation, 318–319

Benzyloxynitrene, structural properties, 547 Benzyl radical

matrix isolation, 817–818 structure, 123

Benzynes derivatives

benzdiynes, 782–784 distonic structure, 232–233 tridehydrobenzynes, 782

m-benzynes hetarynes, 776–782

parent structure, 747–752 substituent effects, 760–762

o-benzynes hetarynes, 775–782

parent structure, 742–747 substituent effects, 759–760

parent benzynes, 742–759 p-benzynes

femtosecond time scale, 910–911 hetarynes, 778–782

parent structure, 752–759 substituent effects, 762–764 substituted benzynes, 759–764

Bergman cyclization p-benzynes

INDEX 1011

parent structure, 752–759 substituent effects, 763–764

hetarynes, 777–782

Bergman rearrangement, femtosecond time scale, 1,4-dehydrobenzene, 910–911

b-proton hyperfine interactions, radical compound identification, electron spin resonance (ESR), 130–131

Bicyclo[1.1.0]butane, electronic spectra, 736 Bicyclo[2.1.0]pentane

femtosecond time scale, trimethylene/ tetramethylene diradicals, 916

radical ions, 228

Bicyclo[2.2.2]oct-2-ene, femtosecond time scale, retro-Diels-Alder reactions, 918

Bicycloalkyl groups, alkyl-protected triplet diphenylcarbenes, 443–444

Bicyclobutane

organic radical ions, strained ring cations, 226–228

singlet carbenes, stepwise addition vs. concerted reaction, 294–297

Bicyclobutonium ion, nonclassical structure, 11–12

Biegeleisen equation, cyclopropane stereochemistry, 990–997

Bifunctional radical cations, structural analysis, 229–234

Bifurcations, potential energy surfaces (PES), transition states and, 931–934

Bimolecular decomposition pathway, laser flash photolysis, 429

Bimolecular nucleophilic substitution (SN2) azide ion at benzylic carbon

benzyl derivatives, 57–58

concerted reaction coupling and change, 51–53

preassociation reactions, 51 ring-substituted cumyl derivatives,

47–48

ring-substituted 1-phenylethyl derivatives (X-1-Y), 46–47

basic mechanisms and nomenclature, 41–43 carbanion intermediates

gas phase reactions, 108–110 nucleophilic aromatic substitution, 104

Bimolecular rate constants, triplet carbenes excited state spectroscopy, 437–438 laser flash photolysis, 428–429

Bimolecular reactions

organic radical ions, cation reactions, 246–261

alkenes and aromatics, 246–250

Соседние файлы в предмете Химия