
- •1. Энергетика процессов
- •1.1. Внутренняя энергия, энтальпия
- •1.2. Термохимия, закон Гесса
- •1.3 Энтропия
- •1.4. Энергия Гиббса
- •1.5. Критерий самопроизвольного протекания процессов
- •1.6. Изменение энергии Гиббса в окислительно-восстановительных реакциях
- •Задачи и упражнения
- •1.2. Термохимия, закон г.И. Гесса
- •1.3. Энтропия
- •1.4. Энергия Гиббса
- •1.5. Критерий самопроизвольного протекания процессов
- •1.6. Изменение энергии Гиббса в окислительно-восстановительных реакциях
- •2. Химическое равновесие
- •2.1. Истинное и кажущееся равновесие, смещение равновесия
- •2.2. Количественные характеристики равновесия
- •Задачи и упражнения
- •2.1. Устойчивое и кажущееся равновесие, смещение равновесия
- •2.2. Количественные характеристики равновесия
- •3. Некоторые равновесия в растворах
- •3.1 Образование растворов, растворимость
- •3.2 Равновесие диссоциации электролитов
- •3.3. Шкала термодинамических функций образования ионов в водных растворах
- •3.4 Равновесие растворения и диссоциации малорастворимого электролита
- •3.5 Равновесие диссоциации воды, буферные растворы
- •3.6. Гидролиз солей
- •Задачи и упражнения
- •3.1. Образование растворов, растворимость
- •3.2. Равновесие диссоциации электролитов
- •3.3. Шкала термодинамических функций образования ионов в водных растворах
- •3.4. Равновесие растворения и диссоциации малорастворимого электролита
- •3.5. Равновесие диссоциации воды, буферные растворы
- •3.6. Гидролиз солей
- •4. Комплексные соединения
- •4.1. Общие сведения о комплексных соединениях
- •4.2 Образование и разрушение комплексных соединений. Диссоциация комплексных соединений
- •Задачи и упражнения Задачи и упражнения
- •4.2. Образование и разрушение комплексных соединений. Диссоциация комплексных соединений
1.3. Энтропия
Пример 1. В каком из следующих процессов следует ожидать наибольшего и наименьшего изменения энтропии:
1) H2 (г) + 0,5O2 (г) = H2O (ж);
2) H2 (г) + 0,5 O2 (г) = H2O (г);
3) C2H6 (г) + 3,5O2 (г) = 2 CO2 (г) + 3 H2O (г);
4) KClO3 (к) = KCl (к) + 1,5 O2 (г).
Решение. Знак и величину S процесса можно оценить, не производя вычислений, если вспомнить, что энтропия газа существенно больше энтропии жидкости и тем более – кристаллического вещества. Поэтому, определяя, насколько число молей газообразных веществ в правой части уравнения больше числа молей газообразных веществ в левой части уравнения, приходим к выводу, что наибольшая положительная энтропия характеризует четвертый процесс. Энтропии первого и второго процессов отрицательны, наибольшая отрицательная энтропия соответствует первому процессу.
Пример 2. Пользуясь справочными данными, определить стандартную энтропию образования K2Cr2O7 (к).
Решение. Искомая величина – это Sо следующего процесса:
2K (к) + 2Cr (к) + 3,5 O2 (г) = K2Cr2O7 (к).
Эта величина может быть найдена на основе соотношения (1.18):
S0 = S0 K2Cr2O7 (к) – 2S0 K (к) – 2S0 Cr (к) – 3,5S0 02 (г) = = 291 – 2×64,48 – 2×23,6 – 3,5×205,0 = – 603,1 Дж/К.
Пример З. Пользуясь справочными данными, определить возможность самопроизвольного протекания при 298,15 К следующих процессов в изолированных системах:
1) KClO3 (к) = KCl (к) +1,5 O2 (г);
2)
N2
(г) + 2H2
(г) +
Cl2
(г) = NH4Cl
(к).
Решение. Для изолированных систем критерием самопроизвольного течения процесса является положительное значение энтропии. Поэтому, пользуясь справочными данными, вычисляем для указанных процессов
=
S0
KCl
(к) + 1,5S0
O2
(г) – S0
KClO3
(к) =
= 82,6 + 1,5×205,0
– 143,0 = 247,1 кДж/К;
=
S0
NH4Cl
(к) – 0,5S0
N2
(г) – 2S0
H2
(г) – 0,5S0
Cl2
(г) =
= 95,8 – 0,5×191,5
– 2×130,5
– 0,5×223,0
= – 372,5 Дж/К.
В результате делаем вывод, что в изолированной системе первый процесс разрешен в самопроизвольном течении, а второй - запрещен.
1.4. Энергия Гиббса
1.5. Критерий самопроизвольного протекания процессов
Пример 1. На основе справочных данных проанализировать вопрос о возможности самопроизвольного протекания следующего процесса при 298,15 К в стандартных условиях:
NaH (к) + H2O (ж) = NaOH (к) + H2 (г).
Решение. Вычисляем стандартную энергию Гиббса данного процесса по соотношению (1.22):
DG0=DG0обрH2(г) + DG0обрNaOH (к) – DG0обрH2O (ж) – DG0обрNaH (к) = = 0 + (–495,9) – (–285,8) – (–56,4) = –153,7 кДж.
Поскольку DG отрицательно, то данный процесс может самопроизвольно протекать при 298,15 К в стандартных условиях.
Пример 2. Почему многие соединения, имеющие DGобр > 0, могут быть получены и даже порой оказываются сравнительно стабильными?
Решение. Действительно, соединения, имеющие DGобр > 0, могут самопроизвольно распадаться на простые вещества (DG такого процесса отрицательно!), однако скорость подобного распада может оказаться незначительной и подобные соединения оказываются сравнительно стабильными. В таких случаях говорят о термодинамически неустойчивых, но устойчивых кинетически соединениях. Примеры таких соединений: H2Te, SiH4, NO2.
Пример 3. На основе расчетов термодинамических величин покажите, чем эффективнее восстанавливать при 298,15 К Сr2O3 (к) до металла – алюминием или магнием?
Решение. Для ответа на поставленный вопрос, очевидно, необходимо вычислить DGо двух процессов:
1) Cr2O3(к) + 3Mg(к) = 3MgO(к) + 2Cr(к);
2) Cr2O3(к) + 2Al(к) = Al2O3(к) + 2Cr(к);
DG01= 2DG0обрCr(к) + 3DG0обрMgO(к) – 3DG0обрMg(к) – DG0обрCr2O3(к) =
= 3DG0обрMgO(к) – DG0обрCr2O3(к) = 3(–569,3) – (–1059,0) = – 648,9 кДж;
DG02= DG0обрCr(к) + DG0обрAl2O3(к) – 2DG0обрAl(к) – DG0обрCr2O3(к) =
= DG0обрAl2O3(к) – DG0обрCr2O3(к) = – 1582,3 – (–1059,0) = – 523,3 кДж.
Самопроизвольное восстановление Сr2O3(к) до Сr(к) при 298,15 К возможно и Mg, и А1; учитывая, что DG0 процесса с Mg более отрицательно, можно сказать, что восстановление магнием более эффективно.
Пример 4. На основе справочных данных оценить температуру восстановления WO3(к) водородом.
Решение. Для начала определим термодинамические функции процесса восстановления при 298,15 К:
WO3(к) + 3H2(г) = W(к) + 3H2O(г);
DG0298,15 = 3DG0обрH2O(г) + DG0обрW(к) – 3DG0обрH2(г) – DG0обрWO3(к) =
= 3DG0обрH2O(г) – DG0обрWO3(к) = 3(–228,6) – (–763,8) = – 78,0 кДж;
DH0298,15= 3DH0обрH2O(г) + DH0обрW(к) – 3DH0обрH2(г) – DH0обрWO3(к) =
= 3DH0обрH2O(г) – DH0обрWO3(к) = 3(–241,8) – (–842,7) = 117,3 кДж;
DS0298,15= 3S0H2O(г) + S0W(к) – 3S0H2(г) – S0WO3(к) =
= 3×188,7 + 32,7 – 3×130,5 – 76 = 131,3 Дж/К.
Как видно, самопроизвольное течение процесса при 298,15 К невозможно. Однако, принимая во внимание положительное значение энтропии процесса, следует ожидать, что с ростом температуры отрицательный энтропийный вклад (–ТDS0298,15K) будет увеличиваться и при некоторой температуре превысит положительное значение энтальпии процесса, а энергия Гиббса станет отрицательной. Границей начала самопроизвольного протекания процесса будет DG0T = 0. Поскольку информация о температурной зависимости величин DН0 и DS0 отсутствует, примем в первом приближении, что они неизменны с ростом температуры, то есть:
DН0T » DН0298; DS0T » DS0298.
Иными словами, строгое термодинамическое соотношение
DG0T = DН0T – TDS0T
переходит в приближенное
DG0T » DН0298,15 – TDS0298,15 .
Полагая DG0T = 0, вычисляем соответствующую температуру:
DH0298,15 – TDS0298,15 = 0;
или
6200С.
Таким образом, при температуре выше 620°С возможно самопроизвольное течение процесса восстановления WO3(к) водородом.