Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Metal-Catalysed Reactions of Hydrocarbons / 02-Small Metal Particles and Supported Metal Catalysts

.pdf
Скачиваний:
31
Добавлен:
08.01.2014
Размер:
1.61 Mб
Скачать

SMALL METAL PARTICLES AND SUPPORTED METAL CATALYSTS

75

character. (iv) Support acidity/basicity may determine the strength of Coulombic interaction across the oxide ion-metal atom interface, causing changes in electronic structure within the metal atoms without actual change transfer (Figure 2.9D).

2.7. PROMOTERS AND SELECTIVE POISONS

We now encounter a semantic problem of considerable size. It has been recognised for a very long time that the activity of metal catalysts can be helped by the presence of quite small amounts of substances that of themselves have no or little activity. This concept first achieved prominence in the development of iron catalysts for ammonia catalysts, and of iron and cobalt catalysts for Fischer-Tropsch synthesis, and the term promoter was applied to these substances. They were of two kinds: (i) structural promoters such as alumina, which acted as grain stabilisers and prevented metal particle sintering and (ii) electronic promoters such as potassium that entered the metallic phase and actually enhanced its activity. In these cases the metal is the major component, so that the catalyst is a promoted metal rather than a supported metal.

The problem of terminology arises when the idea is extended to supported metal catalysts, where a number of tricks have evolved to preserve, protect and defend the activity of the metal, and to direct the reaction into more desirable paths by improving selectivity to the wanted product and eliminating or minimising formation of side products and of species that remain on the surface as catalyst poisons. The term ‘promoter’ can be sensibly used to describe some of these auxiliary agents, but the same or similar effects are produced by other substances to which this term by tradition or convention is not used. Promoters comprise two types: (1) those chiefly associated with the support, e.g. stabilising it for use at very high temperatures (occupying holes in the γ -Al2O3 structure) or neutralising acidic centres that might initiate carbocationic polymerisation of alkenes; and (2) those that mainly interact with metal particles or perhaps the metal-support interface. These need a fuller analysis, which is attempted in Table 2.2, and which for the sake of completeness mentions reactions that are not strictly in our terms of reference. Here we can see two effects at work; one, the less common, where the modifying species245,286,315,326−321 may exert an electronic influence on neighbouring metal atoms, either by tending to donate electrons to the metal or to withdraw them: the consequences are not unlike those shown by altering the acidity or alkalinity of the support. The second, the more common, is where the modifier by occupying places on the surface of the metal eliminates the larger groups of atoms which may be the active centres for dissociative chemisorption or decomposition of a hydrocarbon reactant. There seems to be a general rule applying to hydrocarbon reactions that the reaction most likely to occur is that by which the surface free energy is most greatly

76

TABLE 2.2. Selectivity Promoters for Metal Catalysts

Category

Examples

Effects

References

Electron-rich metals

Cu, Ag, Au, Hg, Sn, Pb, Ge

(a) Improved selectivity in the hydrogenation

 

 

 

of multiple bonds

 

 

 

(b) Suppression of hydrogenolysis in alkane

 

 

 

transformations

 

 

 

(c) Suppression of carbon deposition

 

 

Cl, S2−, N bases, CO

(d) Alteration of hydrogenolysis selectivity

 

Other electron-rich species

(a) Suppression of hydrogenolysis in

 

 

 

petroleum reforming

 

 

 

(b) Improved selectivity in the hydrogenation

 

 

Li+, Na+, K+, Cs+, Ca2+,

of multiple bonds (Lindlar Catalyst)

 

Oxides of electropositive elements

(a) Suppression of carbon deposition

286,327,328,417

 

Mg2+, La3+

(b) Control of chain growth in Fischer-

 

 

 

Tropsch synthesis

 

Mid-Transition Series elements,

Re, MoOx , VOx , TiOx ,

(a) Improved yields of oxygenates in Fischer-

 

and oxo-compounds

CeOx , GeOx

Tropsch synthesis

 

 

 

(b) Improved alkene/alkane ratio in Fischer-

 

 

 

Tropsch synthesis

 

 

 

 

 

2 CHAPTER

SMALL METAL PARTICLES AND SUPPORTED METAL CATALYSTS

77

reduced, either because the adsorbed intermediates engage the largest number of metal atoms or because they prefer to react with atoms of low CN: this has thermodynamic logic and explains the tendency of hydrocarbons to dehydrogenate and form strongly held multiply bonded species (see Chapter 12). The corollary is that reactions that are content to proceed on small active centres, even on single atoms or on low index planes, can only do so when larger or more reactive sites are removed by the addition of a partial monolayer of inert atoms or ions. Thus for example Ru/TiO2 becomes quite selective for the skeletal isomerisation of n-butane at 633 K when partially poisoned by sulfur. The widespread interest in and use of bimetallic systems where mutual solubility is low (e.g. Ru-Cu, Pt-Re, Ru-Sn) is largely explained by these effects; species that moderate chain growth in FischerTropsch synthesis, or direct the reaction towards oxygenated products by limiting the dissociation of carbon monoxide, operate in the same way.256 Unfortunately, since such selectivity promoters deactivate part of the surface, some loss of activity has to be accepted as the necessary price to pay for a cleaner reaction: they therefore fall into the category of selective poisons.332−334 Only rarely (as for example with alkaloid-mediated enantioselective hydrogenation) does the modifier actually lead to a faster rate.

The definition of promotion suggested above excludes cases where the support itself provides an essential service (e.g., in bifunctional and spillover catalysis) or where the promotion occurs unintentionally. Carbon deposition can however sometimes result in a selectivity improvement and of course a species may act at the same time as both an electronic and a selectivity promoter. For these reasons it is not always easy to classify what a particular promoter does, or how it works.

2.8. SINTERING AND REDISPERSION145

Sintering is the process whereby at high temperature small metal particles grow into big ones, with consequent loss of metal area and activity (see Further Reading section). It has been widely studied, both experimentally and theoretically, because of its great nuisance value particularly in reactions that need somewhat high temperatures. Two mechanisms have been considered: (i) whole particle migration and (ii) movement of single atom species governed by Ostwald ripening considerations. The thermodynamic driving force for particle growth has already been discussed (Section 2.1.2). Both processes have been observed, but the former is thought to be more important for practical catalysts having rough surfaces. Mobility of intermediate species involved in catalyst preparation (e.g. Pt/(NH3)2O) can be responsible for particle growth during drying and calcination. Sintering rate depends very much on the gas atmosphere; it is much faster under oxidising than under reducing conditions.

78

CHAPTER 2

Once sintering has taken place, it is no easy task to reverse the process, which is thermodynamically up-hill, unless the metal-support interaction is stronger than that between the metal atoms, in which case sintering ought not to have occurred. It is usually therefore necessary to use a chemical driving force to disaggregate the metal, that is, to convert it via oxidation and reduction back to highly dispersed metal. Most of the work in the open literature concerns the platinum/alumina system because of its relevance to petroleum reforming (Chapter 14), and it mostly appeared in the 1970s and 1980s. In this system, platinum-containing species that are mobile over the surface of the support are formed by treating the used catalyst with oxygen and a chlorine-containing compund (Cl2, HCl or a chlorinated hydrocarbon). The exact composition of this mobile species does not seem to have been established, and is usually represented just as PtOxCly. A procedure of this type also appears to be effective in reconstituting bimetalluc particles (PtIr, PtRe etc), but much of the relevant information is hidden in the patent literature, and does not contribute much to the scientific understanding of the process; neither does the open literature inform us much about means of redispersing other types of catalyst.

REFERENCES

1.G.C. Bond, Chem. Soc. Rev. 20 (1991) 441.

2.Y. Takasu and A.M. Bradshaw, in: Specialist Periodical Reports: Chem. Phys. Solids Surf., Vol. 7 (J.M. Thomas and M.W. Roberts, eds.), The Chemical Society: London, (1978), p. 59.

3.G.C. Bond, Surf. Sci.156 (1985) 966.

4.G.C. Bond in: Electronic Structure and Reactivity of Metal Surfaces, (E.G. Derouane and A.A. Lucas, eds.) Plenum: New York (1976), p. 523.

5.R. van Hardeveld and F. Hartog, Adv. Catal. 22 (1972) 75.

6.R. Burch in: Specialist Periodical Reports: Catalysis, Vol.7 (G.C. Bond and G. Webb, eds.), Roy. Soc. Chem. (1985), p. 149.

7.G. Bergeret and P. Gallezot in: Handbook of Heterogeneous Catalysis, Vol.2 (G. Ertl, H. Knozinger¨ and J. Weitkamp, eds.), Wiley-VCH, Weinheim: (1997), p. 439.

8.R. van Hardeveld and A. van Montfoort, Surf. Sci. 17 (1969) 90.

9.R. van Hardeveld and F. Hartog, Surf. Sci. 15 (1969) 189.

10.M. Muhler, Z. Pa´al and R. Schogl,¨ Appl. Surf. Sci. 47 (1991) 281.

11.B. Heinrichs, F. Noville, J.P. Shoebrechts and J.-P. Picard, J. Catal. 192 (2000) 108.

12.L.N. Lewis, Chem. Rev. 93 (1993) 2693.

13.V. Ponec and G.C. Bond, Catalysis by Metals and Alloys, Elsevier: Amsterdam (1996), Ch. 7.

14.M. El-Sayed. Chem. Mater. 8 (1996) 1161; Science 272 (1996) 1824.

15.G. Schmidt, V. Maihack, F. Lantermann and S. Peschel, J. Chem. Soc. Dalton Trans. (1996) 589.

16.BASF, A.G., Eur. Appl., 920, 912A (1999).

17.J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Faraday Soc. 11 (1951) 55.

18.E. Matijev´ıc, Faraday Discuss. Chem. Soc. 92 (1991) 229.

19.L.N. Lewis and N. Lewis, Chem. Mater. 1 (1989) 106; J. Amer. Chem. Soc. 108 (1986) 743, 7228.

20.M. Boutonnet, J. Kizling, P. Stenius and G. Maire, Colloids Surf. 5 (1982) 209.

SMALL METAL PARTICLES AND SUPPORTED METAL CATALYSTS

79

21.H. Bonnemann¨ and W. Brijoux, in Advanced Catalysts and Nanostructured Materials, Academic Press: New York (1996), p. 165.

22.Y. Mizuboshi, R. Oshima, Y. Maeda and Y. Nagata, Langmuir 15 (1999) 2733.

23.M. Brast, D. Bethell, D.J. Schiffrin and C.J. Kiely, Adv. Mater. 7 (1995) 795.

24.D. Bethell, M. Brast, D.J. Schiffrin and C.J. Kiely, J. Electroanalyt. Chem. 409 (1996) 137.

25.J. Fink, C.J. Kiely, D. Bethell and D.J. Schiffrin, Chem. Mater. 10 (1998) 922.

26.C.J. Kiely, J. Fink, M. Brast, D. Bethell and D.J. Schiffrin, Nature 396 (1998) 494.

27.M. Aindow, S.N. Williams, R.E. Palmer, J. Fink, and C.J. Kiely, Phil. Mag. Lett. 79 (1999) 569.

28.C.J. Kiely, J. Fink, J.-G. Zheng, M. Brast, D. Bethell and D.J. Schiffrin, Adv. Mater. 12 (2000) 640.

29.G. Rien¨acker and S. Engels, Monatsber. 4 (1962) 716.

30.W. Palczewska, M. Cretti-Bujnowska, J. Pielaszek, J. Sobczak and J. Stachurski, in: Proc. 9th Internat. Congr. Catal. (M.J. Phillips and M. Ternan, eds.), Chem. Inst. Canada: Ottawa (1988),

1410.

31.M. Arai, K. Usui, M. Shirai and Y. Nishiyama, in: Preparation of Catalysts VI, (G. Poncelet et al., eds.) Elsevier: Amsterdam (1995), p. 923.

32.H.C. Brown and C.A. Brown, Tetrahedron, Suppl. 8, Pt. I, 149; J. Org. Chem. 31 (1966) 3989.

33.Z. Pa´al, R. Schlogl¨ and G. Ertl, J. Chem. Soc. Faraday Trans. 88 (1992) 1179.

34.J.A. Don, A.P. Pijpers and J.J.F. Scholten, J. Catal. 80 (1983) 296.

35.A.J.S. Chowdhury, A.K. Cheetham and J.A. Cairns, J. Catal. 95 (1985) 353.

36.J. Freel, W.J.M. Pieters and R.B. Anderson, J. Catal. 14 (1969) 247; 16 (1970) 281.

37.B.V. Aller, J. Appl. Chem. 8 (1958) 163, 492.

38.J.H.P. Tyman, Chem. and Ind. (1964) 404.

39.R. Sassoulas and Y. Trambouze, Bull. Soc. Chim. France (1964) 985.

40.M. Raney, Ind. Eng. Chem. 32 (1940) 1199.

41.R. Adams and V. Voorhees, J. Amer. Chem. Soc. 44 (1922) 1683; J.A. Stanfield and P.E. Robbins, Proc. 2nd .Intenat. Congr. Catal. Editions Technip: Paris 2 (1960), 2570.

42.G. Webb and S.J. Thomson, J. Chem. Soc. Chem. Comm. 20 (1965) 473.

43.M. Faraday, Phil. Trans. Roy. Soc. 147 (1858) 145.

44.A.D. O Cinneide and J.K.A. Clarke, Catal. Rev. 7 (1973) 213.

45.G.C. Bond, Acc. Chem. Res. 26 (1993) 490.

46.K. Foger, in: Catalysis – Science and Technology, Vol. 6 (J.R. Anderson and M. Boudart, eds.) Springer-Verlag: Berlin, (1984), p. 227.

47.P. Papageorgiou, D.M. Price, A. Gavriilidis and A. Varma, J. Catal. 158 (1996) 439.

48.J.A. Schwarz, C. Contescu and A. Contescu, Chem. Rev. 95 (1995) 477.

49.F. Pinna, Catal. Today 41 (1998) 129.

50.R. Psaro and S. Recchia, Catal. Today 41 (1998) 139.

51.Catal. Today 42 (1–2) (1998) 1–158 (M.C. Kung, R.D. Gonzalez, E.I. Vio and L.T. Thompson, eds.)

52.A.D. O Cinneide and J.K.A. Clark, Catal. Rev. 7 (1972–3) 213.

53.Preparation of Solid Catalysts (G. Ertl, H. Knozinger¨ and J. Weitkamp, eds.), Wiley-VCH: Weinheim (1999).

54.A.B. Stiles, Catalyst Manufacture: Laboratory and Commercial Preparations, Dekker: New York (1983).

55.Progress in Catalyst Preparation, (R.E. Resasco and R. Miranda, eds.), Catal. Today 15 (1992) 339.

56.Active Centres in Catalysis, (R. Burch, ed.), Catal. Today 10 (1991) 233.

57.M. Campanati, G. Fornasari and A. Vaccari, Catal. Today, 77 (2003), 299.

58.A.T. Bell, in: Catalyst Design: Progress and Perspectives, (L.L. Hegedus, ed.), Wiley: Chichester (1987), Ch. 4, p. 103.

80

CHAPTER 2

59.G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, Catal. Today 41 (1998) 207.

60.F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powders and Porous Solids, Academic Press: London (1998).

61.The SCI/IUPAC/NPL Project on Surface Area Standards, J. Appl. Chem. Biotechnol. 24 (1974) 199.

62.IUPAC Commission on Colloid and Surface Chem., Manual on Catalyst Characterisation; Pure & Applied Chem., 63 (1991) 1227; Pure & Applied Chem. 67 (1995) 1257.

63.G.C. Bond, Catalysis by Metals, Academic Press: London 1962.

64.R.K. Iler, Chemistry of Silica, Wiley: New York (1979).

65.B.L. Mojet, J.T. Miller, D.E. Ramaker and D.C. Koningsberger, J. Catal. 186 (1999) 373.

66.W.M.H. Sachtler and Z.C. Zhang, Adv. Catal. 39 (1993), 129.

67.L. Surdelli, G. Martra, R. Buro, C. Dossi and S. Coluccia, Topics in Catal. 8 (1999) 237.

68.R.A. Dalla Betta and M. Boudart, Proc. 5t h Internat. Congr. Catal., (J.W. Hightower, ed.), North Holland: Amsterdam 2 (1973) 1329.

69.K. Foger and J.R. Anderson, J. Catal. 54 (1978) 318.

70.A. Tonschiedt, P.L. Ryder, N.I. Jaeger and G. Schulz-Egloff, Surf. Sci. 281 (1993) 51.

71.J. de Graaf, A.J. van Dillen, K.P. de Jong and D.C. Koningsberger, J. Catal. 203 (2001) 307.

72.G. Sankar and J.M. Thomas, Topics in Catal. 8 (1999) 1.

73.J.M. Thomas and W.J. Thomas, Principles and Practice of Heterogeneous Catalysis, VCH: Weinheim,(1997).

74.V.B. Kazansky, V. Yu. Borovlov, A.I. Serykh and F. Figu´eras, Catal. Lett. 49 (1997) 35.

75.F.-B. Li and G.-Q. Yuan, Catal. Lett. 89 (2003) 115.

76.L.R. Radovic and F. Rodr´ıguez-Reinoso, in: Chemistry and Physics of Carbon, Vol. 25 (P.A. Thrower, ed.), Marcel Dekker Inc.: New York (1996)

77.P. Albers, R. Burmeister, K. Seibold, G. Prescher, S.F. Parker and D.K. Ross, J. Catal. 181 (1999) 145.

78.V.A. Semikotenov, V.I. Zaikovski and G.V. Plaksin, in Abstracts, 9t h Internat. Symp. on Relations between Homogeneous and Heterogeneous Catalysis, Roy. Soc. Chem.: London (1998), p. 46.

79.W. Airey, S.I. Ajiboye, P.A. Barnes, D.R. Brown, S.C.J. Buckley, E.A. Dawson, K.F. Gadd and G. Midgley, Catal. Today 7 (990) 179.

80.J.-M. Nhut, R. Vieira, L. Pesant, J.-P. Tessonnier, N. Keller, G. Ehret, C. Pham-Huu and M.J. Ledoux, Catal. Today 76 (2002) 11.

81.J.H. Bitter, M.K. van der Lee, A.G.T. Slotboom, A.J. van Dillen and K.P. de Jong, Catal. Lett. 89 (2003) 139.

82.M.L. Toebes, J.H. Bitter, A.J. van Dillen and K.P. de Jong, Catal. Today 76 (2002) 33.

83.K.P. de Jong and G.W. Geus, Catal. Rev.-Sci. Eng. 77 (2000) 359.

84.T. Braun, M. Wohlers, G. Nowitzke, G. Wortmann, Y. Uchida, N. Pf¨ander and R. Schlogl,¨ Catal. Lett. 43 (1997) 167; T. Braun, M. Wohlers, T. Belz and R. Schlogl,¨ Catal. Lett. 43 (1997) 175.

85.B. Coq, V. Brotous, J.M. Planeix, L.C. de M´enorval and R. Dutartre, J. Catal. 176 (1998) 358.

86.H. Nagashima, A. Nakaoka, S. Tajima, Y. Saito and K. Itah, Chem. Lett. (1992) 1361.

87.R. Kozlowski, R.F. Pettifer and J.M. Thomas, J. Phys. Chem. 87 (1983) 5176.

88.J.A. Schwarz, C. Contescu and J. Jagiello, in: Specialist Periodical Reports: Catalysis, vol. 11, (J.J. Spivey and S.K. Agarwal, eds.), Roy. Soc. Chem. (1994), p. 127.

89.F. Kapteijn, J.H. Heiszwolf, T.A. Nijhuis and J.A. Moulijn, Cat-Tech. 5, Aug. (1999), 18.

90.R.D. Gonzalez, L. Lopez and R. Gomez, Catal. Today 35 (1997) 293.

91.T. Ueckert, R. Lamber, N.I. Jaeger and U. Schubert, Appl. Catal. A: Gen. 155 (1997) 75.

92.Ihl Hyun Cho, Seung Bin Park, Sung June Cho and Ryong Ryoo, J. Catal. 171 (1998) 295.

93.S.L. Anderson, A.K. Datye, T.A. Wark and M.J. Hampden-Smith, Catal. Lett. 8 (1991) 345.

94.K. Balakrishnan and R.D. Gonzalez, J. Catal. 144 (1993) 395.

95.T. Lopez, R. Gomez, O. Novaro, A. Ramirez-Sotis, E. Sanchez-Mora, S. Castillo, E. Poulain and J.M. Martinez-Mayadan, J. Catal. 14 (1993) 114.

SMALL METAL PARTICLES AND SUPPORTED METAL CATALYSTS

81

96.C.K. Lambert and R.D. Gonzalez, Appl. Catal. A: Gen. 172 (1998) 233.

97.J.R. Regalbuto, A. Navada, S. Shadid, M.L. Bricker and Q. Chen, J. Catal. 184 (1999) 335.

98.Sui-wen Ho and Yu-Shu Su, J. Catal. 168 (1997) 51.

99.F. Boccuzzi, A. Chiorino, M. Gargano and N. Ravazio, J. Catal. 165 (1997) 129.

100.K. Akasura, W.-J. Chua, M. Shirai, K. Tomishige and Y. Iwasawa, J. Phys. Chem. B. 101 (1997) 5549.

101.P. Reyes, M. Oportus, G. Pecchi, R. Rety and B. Moraweck, Catal. Lett. 37 (1996) 193.

102.A. Gouget, M. Aouine, F.J. Cadete Santos Aires, A. De Hallmann, D. Schweich and J.P Candy,

J.Catal. 209 (2002) 135.

103.R.W. Joyner and E.S. Shpiro, Catal. Lett. 9 (1991) 239.

104.G.C. Bond, R.R. Rajaram and R. Burch, Appl. Catal. 27 (1986) 379.

105.A.E. Newkirk and D.W. McKee, J. Catal. 11 (1968) 370.

106.G. Marquez de Cruz, G. Djega-Mariadassou and G. Bugli, Appl. Catal. 17 (1985) 205.

107.S. Ringler, Ph.D. thesis, Univ. L. Pasteur, Strasbourg, 1998.

108.M. Ichikawa, Plat. Met. Rev. 44 (2000) 3.

109.D. Alexeev and B.C. Gates, J. Catal. 176 (1998) 310.

110.P. Serp, P. Kalck and R. Feuer, Chem. Rev. 102 (2002) 3085.

111.B.C. Gates, Chem. Rev. 95 (1995) 511.

112.B. Coq, E. Crabb, M. Warawdekar, G.C. Bond, J.C. Slaa, S. Galvagno, L. Mercadante, J. Garcia Ruiz and M.C. Sanchez Sierra, J. Molec. Catal. 99 (1994) 1.

113.G.C. Bond and D.T. Thompson, Catal. Rev.–Sci. Eng. 41 (1999) 319.

114.J. Jia, K. Haraki, J.N. Kondo, K. Domen and K. Tamaru, J. Phys. Chem. B 104 (2000) 11153.

115.M. Okumura, T. Akita and M. Haruta, Catal. Today 74 (2002) 265.

116.A. Berthet, A.L. Thomann, F.J. Cadete Santos Aires, M. Brun, C. Deranlot, J.L. Bertolini, J.P. Rozenbaum, P. Brault and P. Andreazza, J. Catal. 190 (2000) 49.

117.P. Serp, R. Feurer, R. Morancho and P. Kalck, J. Molec. Catal. A: Chem. 101 (1995) L107.

118.I.C. Brownlie, J.R. Fryer and G. Webb, J. Catal. 14 (1969) 263.

119.G.C. Bond and G. Hierl, J. Catal. 61 (1980) 348.

120.G. Henrici-Oliv´e and S. Oliv´e, Chimia 27 (1967) 87.

121.M. Che, M. Richard and D. Olivier, J. Chem. Soc. Faraday Trans. I 76 (1980) 1526.

122.M. Gueaia, M. Breysse and R. Frety, J. Molec. Catal. 25 (1984) 119.

123.Chor Wong and R.W. McCabe, J. Catal. 107 (1987) 535.

124.A. Jones and B.D. McNicol, Temperature-Programmed Reduction for Solid Materials Characterization, Dekker: New York (1986).

125.P. Malet and A. Caballero, J. Chem. Soc. Faraday Trans. 84 (1988) 2369.

126.D.E. Damiani and A.J. Rouco, J. Catal. 100 (1986) 512.

127.P.G. Menon and G.F. Froment, Appl. Catal. 1 (1981) 31; J. Catal. 59 (1979) 138.

128.R.-Y. Tang, R.-A. Wu and L.-W. Liu, Appl. Catal. 10 (1984) 163.

129.A.I.M. van den Broek, J. van Grondelle and R.A. van Santen, J. Catal. 167 (1997) 417.

130.B. Shelimov, J.-F. Lambert, M. Che and B. Didillon, J. Catal. 183 (1999) 462.

131.T. Shido, M. Lok and R. Prins, Topics in Catal. 8 (1999) 223.

132.A. Munoz˜ -P´aez and D.C. Koningsberger, J. Phys. Chem. 99 (1995) 4193.

133.D. Bazin, I. Kov´acs, L. Guzci, P. Parent, C. Laffon, F. De Groot, O. Ducreux and J. Lynch,

J.Catal. 189 (2000) 456.

134.S.C. Chan, S.C. Fung and J.H. Sinfelt, J. Catal. 113 (1988) 164.

135.B.M. Shelimov, J.-F. Lambert, M. Che and B. Didillon, J. Molec. Catal. A. Chem. 158 (2000) 91.

136.Y. Udagawa, S. Tanabe, A. Veno and K. Toji, J. Amer. Chem. Soc. 106 (1984) 612.

137.A.K. Datye, J. Catal. 216 (2003) 144.

138.J.-P. d’Espinose de la Caillerie, M. Kermerac and O. Clause, J. Am. Chem. Soc. 117 (1995) 11471.

139.S. Boujday, J. Lehman, J.-F. Lambert and M. Che,Catal. Lett. 88 (2003) 23.

82

CHAPTER 2

140.G.C. Bond, in: Handbook of Heterogeneous Catalysis, Vol. 3 (G. Ertl. H. Knozinger¨ and J. Weitkamp, eds.), VCH: Weinheim, p. 1489.

141.M.J. Kappers and J.H. van der Maas, Catal. Lett. 10 (1991) 365.

142.D.W. Goodman, Chem. Rev. 95 (1995) 523.

143.P.L.J. Gunter, J.W. Niemantsverdriet, F.H. Ribeiro and G.A. Somorjai, Catal. Rev.–Sci. Eng. 39 (1997) 77.

144.C.T. Campbell, Adv. Catal. 36 (1989) 2.

145.B.K. Min, A.K. Santra and D.W. Goodman, Catal. Today 85 (2003) 113.

146.L. Guczi and A. S´ark´any, in: Specialist Periodical Reports: Catalysis, Vol. 11, (J.J. Spivey and S.K. Agarwal, eds.), Roy. Soc. Chem. (1994), p. 318.

147.J.H. Sinfelt, Acc. Chem. Res. 20 (1987) 134.

148.K.E. Coulter and A.G. Sault, J. Catal. 154 (1995) 56.

149.C. Betizeau, C. Bolivar, H. Charcosset, R. Frety, G. Leclerq, R. Maurel and L. Tounayan, in: Preparation of Catalysts (B. Delmon, P.A. Jacobs, G. Poncelet, eds.), Elsevier: Amsterdam (1976), p. 425.

150.C. Kappenstein, M. Saouabe, M. Gu´erin, P. Marecot, I. Uszkurat and Z. Pa´al, Catal. Lett. 31 (1995) 9.

151.C. Audo, J.F. Lambert, M. Che and B. Didillon, Catal. Today 65 (2001) 157.

152.A. Giroir-Fendler, D. Richard and P. Gallezot, Faraday Discuss. Chem. Soc. 92 (1991) 69.

153.J.H. Sinfelt, Internat. Rev. Phys. Chem. 7 (1988) 281.

154.G.C. Bond and Yide Xu, J. Molec. Catal. 25 (1984) 141.

155.B.D. Chandler, A.B. Schnabel and L.H. Pignolet, J. Catal. 193 (2000) 186.

156.G.M. Nunez˜ and A.J. Rouco, J. Catal. 111 (1988) 41.

157.M. Fern´andez-Garc´ıa, J.A. Anderson and G.L. Haller, J. Phys. Chem.100 (1996) 16247.

158.L. Guczi, R. Sundararajan, Zs. Kopp´ary, Z. Zsoldos, Z. Schay, F. Mizakami and S. Niwa, J. Catal. 167 (1997) 482.

159.O.S. Alexeev, G.W. Graham, M. Shelef and B.C. Gates, J. Catal. 190 (2000) 157.

160.B. Heinrichs, F. Noville and J.-P. Pirard, J. Catal. 170 (1997) 366.

161.I. Zuburtikudis and H. Saltsburg, Science 258 (1992) 1337.

162.G.A. Somorjai, Catal. Lett. 76 (2001) 1.

163.G. C´ardenas, R. Oliva, P. Reyes and B.L. Rivas, J. Molec. Catal. A: Chem. 191 (2003) 87.

164.M. Che and C.O. Bennett, Adv. Catal. 36 (1989) 55.

165.Handbook of Heterogeneous Catalysis, Vol. 2 (G. Ertl, H. Knozinger¨ and J. Weitkamp, eds.),

Wiley-VCH: Weinheim (1997).

166. . Faraday Discuss. Chem. Soc. 92 (1991).

167.Handbook of Heterogeneous Catalysis, Vol. 3 (G. Ertl, H. Knozinger¨ and J. Weitkamp, eds.), VCH: Weinheim (1997).

168.W. Romanowski, Highly Dispersed Metals, Ellis Horwood: Chichester (1987).

169.R.L. Burwell Jr., Langmuir 2 (1986) 2.

170.O.L. P´erez, D. Romen and M.J. Yacam´an, Appl. Surf. Sci. 13 (1982) 402; J. Catal. 79 (1983) 240.

171.O.M. Poltorak and V.S. Boronin, Russ. J. Phys. Chem. 40 (1966) 1436; 39 (1965) 781, 1329.

172.O.-L. Perez and M.J. Yacaman, J. Catal. 79 (1983) 240.

173.J.M. Montejano-Carrizales and J.L. Moran-Lopez, Nanostr. Mater. 1 (1992) 397.

174.E.G. Schlosser, Ber. Bunsenges. Phys. Chem. 73 (1969) 358.

175.R.L. Augustine, Heterogeneous Catalysis for the Synthetic Chemist, Dekker, New York: (1996), Chs. 3 and 4.

176.R.L. Augustine and J.F. Van Pepper, Anal. New York Acad. Sci. 172 (1970) 244.

177.S. Siegel, J. Outlaw Jr. and N. Garti, J. Catal. 52 (1978) 102.

178.R.L. Augustine and K.M. Lahanas, in: Catalysis of Organic Reactions, (J.R. Kosak and T.A. Johnson, eds.), Dekker: New York (1994), p. 279.

SMALL METAL PARTICLES AND SUPPORTED METAL CATALYSTS

83

179.J.R. Anderson, Sci. Prog., Oxford, 69 (1985) 461.

180.J.R. Anderson, Structure of Metallic Catalysts, Academic Press: New York (1975).

181.A. Borodzinski´ and M. Bonarowska, Langmuir 13 (1997) 5613.

182.M. Che and C.O. Bennett, J. Catal. 120 (1989) 293.

183.G.C. Bond, J. Catal. 136 (1992) 631.

184.A.Y. Stakheev and L.M. Kustov, Appl. Catal. A: Gen. 188 (1999) 3.

185.G.C. Bond and J. Turkevich, Trans. Faraday Soc. 52 (1956) 1235.

186.J.E. Benson and M. Boudart, J. Catal. 4 (1965) 704.

187.S. Bernal, J.J. Calvins, M.A. Cauqui, J.M. Gatica, C. Lopez´ Cartes, J.A. P´erez Omil and J.M. Pintado, Catal. Today, 77 (2003) 385.

188.A. Howie, Faraday Discuss. Chem. Soc. 92 (1991) 1.

189.P.-A. Buffat, M. Flueli,¨ R. Spycher, P. Stadelmann and J.-P. Borel, Faraday Discuss.Chem. Soc. 92 (1991) 173.

190.D.J.C. Yates and E.B. Prestridge, J. Catal. 106 (1987) 549.

191.P. Gallezot, A.I. Bienenstock and M. Boudart, Nouv. J. Chim. 2 (1978) 263.

192.G. Bergeret, in: Handbook of Heterogeneous Catalysis, Vol. 2 (G. Ertl, H. Knozinger and J. Weitkamp, eds.), Wiley-VCH: Weinheim, (1997), p. 464.

193.J.W. Niemantsverdriet, Spectroscopy in Catalysis, VCH: Weinheim (1993).

194.H. Brumberger, F. DeLaglio, J. Goodisman, M.G. Phillips, J.A. Schwarz and P. Sen, J. Catal. 92 (1985) 199.

195.J. Goodisman, H. Brumberger and R. Cupelo, J. Appl. Crystallogr. 14 (1981) 305.

196.A. Benedetti, L. Bertoldo, P. Cantan, G. Goerigk, F. Pinna, P. Riello and S. Polizzi, Catal. Today 49 (1999) 485.

197.A. Benedetti, S. Polizzi, R. Riello, F. Pinna and G. Goerigk, J. Catal. 171 (1997) 345.

198.F.B. Rasmussen, A.M. Moelenbroek, B.S. Clausen and R. Feidenhans, J. Catal. 190 (2000) 205.

199.P. Georgopoulos and J.B. Cohen, J. Catal. 92 (1985) 211.

200.D.A.H. Cunningham, W. Vogel, R.M. Torres Sanchez, K. Tanaka and M. Harata, J. Catal. 183 (1999) 24.

201.V. Gutzmann and W. Vogel, J. Phys. Chem. 94 (1990) 4991.

202.G.C. Bond and Z. Pa´al, Appl. Catal. A Gen. 86 (1992) 1.

203.K.S. Liang, S.S. Laderman and J.H. Sinfelt, J. Phys. Chem. 86 (1987) 2352.

204.J.H. Sinfelt, in: Catalysis-Science and Technology, (J.R. Anderson and M. Boudart, eds.), Springer-Verlag, Berlin: (1981), p. 257.

205.G. Vlaic, D. Andreatta and P.E. Colavita, Catal. Today 41 (1998) 261.

206.R.W. Joyner and P. Meehan, Vacuum 23 (1983) 691.

207.M. Vaarkamp and D.C. Koningsberger in: Handbook of Heterogeneous Catalysis, Vol. 2 (G. Ertl,

H.Knozinger¨ and J. Weitkamp, eds.), Wiley-VCH: Weinheim, (1997), p. 475.

208.B.S. Clausen, Catal. Today 39 (1998) 293.

209.M.G. Mason, Phys. Rev. B: Condens. Matter 27 (1983) 748.

210.Y. Iwasawa, J. Catal. 216 (2003) 165.

211.K. Akasura, T. Kubota, N. Ichikuni and Y. Iwasawa, Proc. 11t h Internat. Congr. Catal. (J.W. Hightower, W.N. Delgass, E. Iglesia and A.T. Bell, eds.), Elsevier: Amsterdam B (1996) 911.

212.N. Ichikuni and Y. Iwasawa, Catl. Lett. 20 (1993) 87.

213.R.H. Lewis, J. Catal. 69 (1981) 511.

214.D.C. Koningsberger, M.K. Oudenhuijzen, J. de Graaf, J.A. van Bokhoven and D.E. Ramaker,

J.Catal. 216 (2003) 178.

215.R.A. Dalla Betta, M. Boudart, P. Gallezot and R.S. Weber, J. Catal. 69 (1981) 514.

216.A.M. Venezia, Catal. Today, 77 (2003) 359.

217.S.D. Jackson, J. Willis, G.D. McLellan, G. Webb, M.B.T. Keegan, R.B. Moyes, S. Simpson, P.B. Wells and R. Whyman, J. Catal. 139 (1993) 191.

84

CHAPTER 2

218.Z. Karpinski,´ Adv. Catal. 37 (1990) 45.

219.B. Bellamy, A. Masson, V. Degouveia, M.C. Desjoqu`eres, D. Spanjaard and G. Tr´eglia, J. Phys.: Condens. Matter 1 (1989) 5875.

220.A. Masson, B. Bellamy, Y. Hadj Romdhane, M. Che, H. Roulet and G. Dufour, Surf. Sci. 173 (1986) 479.

221.J.W. Niemantsverdriet and J. Butz, in: Handbook of |Heterogeneous Catalysis, Vol. 2 (G. Ertl. H. Knozinger¨ and |J. Weitkamp, eds.), Wiley-VCH: Weinheim, (1997), p. 512.

222.F.M. Mulder, R.C. Thiell, L.J. de Jongh and P.C.M. Gubbens, Nanostruct. Mat. 7 (1996) 269.

223.S. Bernal, J.J. Calvino, M.A. Cauqui, J.M. Gatica, L. Larese, J.A. P´erez Omil and J.M. Pintado,

Catal. Today 50 (1999) 175.

224.J.J. van der Klink, Adv. Catal. 44 (1999) 1.

225.J.P. Bucher, J. Buttet, J.J. van der Klink, M. Graetzel, E. Newson and T.B. Truong, J. Molec. Catal. 43 (1987) 213.

226.C.P. Slichter, Surf. Sci. 106 (1981) 382.

227.H.T. Stokes, C.D. Makowka, P.K. Wang, S.L. Rudaz and C.P. Slichter, J. Molec. Catal. 20 (1983) 321.

228.C.D. Makowka and C.P. Slichter, Phys. Rev. B: Condens. Matter 31 (1985) 5663.

229.K. Sakaie, C.P. Slichter and J.H. Sinfelt, J. Magnet. Res. A 119 (1996) 235.

230.L.C. de Menorval, J.P. Fraissard and T. Ito, J. Chem. Soc. Faraday Trans. I 78 (1982) 403.

231.J. Fraissard, Catal. Today 51 (1999) 481.

232.Sung June Cho, Wha-Seung Aha, Suk Bong Hong and Ryong Ryoo, J. Phys. Chem. 100 (1996) 4996.

233.G.A. Attard, D.J. Jenkins, O.A. Hazzai, P.B. Wells, J.E. Gillies, K.G. Griffin and P. Johnson in: Catalysis in Application (S.D. Jackson, J.S.J. Hargreaves and D. Lennon, eds.), Roy. Soc. Chem.: London (2003), p. 70.

234.F.B. Passos, I.S. Lopes, P.R.J. Silva and H. Saitovvitch, Catal. Today 78 (2003) 411.

235.J. Winterlin, Adv. Catal. 45 (2000) 131.

236.B. Bellamy, S. Meckken and A. Masson, Z. Phys. D – Atoms, Mols, and Clusters 26 (1993) 561.

237.C. Xu, X. Lai and D.W. Goodman, Faraday Disc. Chem. Soc. 105 (1996) 247.

238.A. Berko´ and F. Solymosi, J. Catal. 183 (1999) 91.

239.A. Berko,´ G. Kliv´enyi and F. Solymosi, J. Catal. 182 (1999) 511.

240.King Lun Yeung and E.E. Wolf, J. Catal. 143 (1993) 409.

241.A.K. Datye, D.S. Kalakkad, E. Volke¨ and L.F. Allard, in: Electron Holography, (A. Tonomura, L.F. Allard, G. Pozzi, D.C. Joy and Y.A. Ono, eds.), Elsevier: Amsterdam (1995), p. 199.

242.S. Schimpf, M. Lucas, C. Mohr, U. Rodenerck, A. Bruckner,¨ J. Radnik, H. Hofmeister and P. Claus, Catal. Today 72, 63 (2002).

243.J. Saaz, M.J. Rojo, P. Malet, G. Munuera, M.T. Blasco, J.C. Conesa and J. Soria, J. Phys. Chem. 89 (1985) 5427.

244.M.T. Blasco, J.C. Conesa, J. Soria, A.R. Gonz´alez-Elipe, G. Munuera, J.M. Rojo and J. Sanz,

J. Phys. Chem. 92 (1988) 4685.

245.N. Takahashi, T. Mori, A. Farata, S. Komai, A. Miyamoto, T. Hattori and Y. Murakami, J. Catal. 110 (1988) 410.

246.S. Tschudin, T. Shido, R. Prins and A. Wokaun, J. Catal. 181 (1999) 113.

247.C.H. Bartholomew in: Specialist Periodical Reports: Catalysis, Vol. 11, (J.J. Spivey and S.K. Agarwal, eds.), Roy. Soc. Chem. (1994), p. 93.

248.R.A. Dalla Betta, J. Catal. 34 (1974) 57.

249.R. Gomez, S. Guentes, F.J. Fernandez del Valle, A. Campero and J.M. Ferreira, J. Catal. 38 (1975) 47.

250.G.C. Bond and Lou Hui, J. Catal. 147 (1994) 346.

251.Dong Jin Suh, Tae-Jin Park and Song-Ki Ihm, J. Catal. 149 (1994) 438.