Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
24
Добавлен:
08.01.2014
Размер:
1.45 Mб
Скачать

Table 1 (continued)

Zeolite

Substituting

Synthesis

Si/T or

Techniques of

Precursors

Refs.

 

element

 

T content

characterization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MFI

Ga

Hydrothermal

25

TA, XPS, Catalysis

GaO(OH)

 

[96]

MFI

Ga

Hydrothermal

280

TPD, C3H8 oxidation

Ga(NO3)3

 

[103]

MFI

Ga

Hydrothermal

30

IR, ESR, C3H8 aromatization

Ga2(SO4 )3

 

[106]

MFI

Ga

Hydrothermal

30–180

Acidity, Catalysis

Ga(NO3)3

 

[107]

MFI

Ga

Hydrothermal

1821 × 1019 atom. g–1

Diffusion of benzene

 

 

 

 

 

[108]

MFI

Ga

Hydrothermal

39–212

XRD, SEM, ion exchange

Ga2(SO4 )3

 

[109]

MFI

Ga

Exchange

1.7 wt % Ga

XRD, TA, Catalysis

Ga2O3

 

 

[110]

MFI

Ga

Impregnation

2, 4, 6 wt % Ga

Catalysis

Ga(NO3)3

 

[111]

MFI

Ga

Exchange

(1.80 wt %) 3–18

Catalysis

NaGaO2

 

 

[112]

MFI

Ga

Hydrothermal

38, 61, 127

FAAS: framework and

Ga(NO3)3

 

[113]

 

 

 

 

extra-framework Ga

 

 

 

 

 

 

MFI

Ga

Hydrothermal

Si/Ga=50

NMR, TPD, SEM, Catalysis

 

 

 

 

 

[114]

MFI

Ga

Exchange

 

XPS, IR

Ga2O3 + NaOH

[115]

MFI

Ga2O3

Mechanical

5–25 wt %

Catalysis

 

 

 

 

 

[116]

MFI

Ga

Hydrothermal or

 

ESR, 71Ga NMR, 29Si NMR,

Ga

O

 

 

[117]

 

 

Modification

 

Catalysis

2

 

3

 

 

 

 

 

 

 

 

 

 

 

 

MFI

V

Hydrothermal

270

TPD, C3H8 oxidation

VCl3

 

 

 

[103]

MFI

V

Hydrothermal

Si/V=50

UV-Vis, Catalysis

 

 

 

 

 

[118]

MFI

V

Hydrothermal

 

UV-Vis, EPR, NMR, IR, Raman

V2O5 , NH4 VO3,

[119]

 

 

 

 

 

NaVO3, VO(OPri)3,

 

 

 

 

 

 

VO(acac)2

 

 

MFI(VS1)

V

Hydrothermal

95.977/0.023

ESR, ESEM

VOSO4

 

 

[120–122]

MFI

V

Hydrothermal or

 

ESR, 51V NMR, 29Si NMR,

VCl

; V

O

5

[117]

 

 

Modification

 

Catalysis

 

3

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zeolites in Substitution Isomorphous

375

Table 1 (continued)

Zeolite

Substituting

Synthesis

Si/T or

Techniques of

Precursors

Refs.

 

element

 

T content

characterization

 

 

 

 

 

 

 

 

 

 

 

MFI

V

Hydrothermal

29.41 mmol (100 g)–1

ESR, Catalysis

VOCl3

 

[123]

MFI

V

Hydrothermal

42

ESR, IR, adsorption catalysis

VO(COO)2

[124]

MFI

V

Hydrothermal

98, 120

ESR, 51V-, 29Si NMR, EPMA

VOSO

 

[125]

 

 

 

 

 

4

 

 

MFI

V

 

 

XRD, NMR, ESR, TA, IR,

VOSO4

 

[126]

 

 

 

 

XRF, SSIMS

 

 

 

MFI

V

Exchange

 

ESR, IR, UV-Vis, TPD

V2O3 + HZSM-5

[127]

MFI

Zn

Hydrothermal

 

XRD, SEM, XPS

 

 

[128]

MFI

Sn

Hydrothermal

0.8–3.3/u.c.

29Si-, 119Sn NMR, Catalysis

SnCl4

 

[129]

MFI

Fe

Hydrothermal

14–42 14–23; 45 9.25

27Al NMR, FTIR

 

 

[105]

MFI

Fe

Hydrothermal

 

Gas diffusion and permeance

 

 

[86]

membrane

 

 

 

 

 

 

 

MFI

Fe

Hydrothermal

9

Catalysis

 

 

[89]

MFI

Fe

Hydrothermal

25

TA, XPS, Catalysis

Fe(NO3)3

[96]

MFI

Fe

Hydrothermal

50

FTIR, UV-Vis, NO probe

 

 

[130]

MFI

Fe

Hydrothermal

0.080.40 mol kg–1

29Si NMR, Acidity (TPD),

Fe(NO )

3

[131]

 

 

 

 

ESR, BET

3

 

 

 

 

 

 

 

 

MFI

Fe

Hydrothermal

0.08 wt % Fe2O3

C6H6 + N2O = C6H5 OH

 

 

[132]

MFI

Fe

Hydrothermal

250

TPD, C3H8 oxidation

Fe(NO3)3

[103]

MFI

Fe

Hydrothermal

50–150

SEM, IR, Acidity, Catalytic

FeCl3

 

[133]

 

 

 

 

activity

 

 

 

MFI

Fe

Hydrothermal

 

UV res. Raman, XRD, ESR

 

 

[134]

MFI

Fe

Hydrothermal

Si/Fe = 54

NMR, TPD, SEM, Catalysis

 

 

[114]

MFI

Ge

Hydrothermal

10–25

SEM, Catalysis

GeO2

 

[144]

MFI (TS1)

Ti

Hydrothermal

2.8% TiO2

Oxidation of C3H8, C4H10

 

 

[135]

376

.al et Nagy.B .J

Table 1

(continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zeolite

Substituting

Synthesis

Si/T or

Techniques of

Precursors

 

 

 

Refs.

 

element

 

T content

characterization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MFI

Ti

Gas-solid

 

FTIR, UV-Vis, XRD,

TiCl4

 

 

 

 

 

 

[136]

 

 

reaction

Si/Ti 50

ICP-AES, Catalysis

 

 

 

 

 

 

 

 

 

MFI

Ti

Hydrothermal

UV-Vis,

 

 

 

 

 

 

 

 

[118]

 

 

 

 

Catalysis

 

 

 

 

 

 

 

 

 

MFI

Fe-Mo-B

Hydrothermal

4.6% Mo 1.41% Fe

C6H6 + N2O = C6H5OH

BET, TPD

 

 

 

[104]

 

 

CVD 0.15% B

 

 

 

 

 

 

 

 

 

 

 

MFI

Mo

Impregnation

3.6 wt % MoO3

XRD, FTIR, TPR, SEM

MoO3 + HZSM-5

 

 

[137]

MFI

Be

Treatment of

2280

9Be NMR

(NH )

 

BeF

4

 

 

[138]

 

 

NH4-ZSM-5

 

 

 

4

2

 

 

 

 

 

 

3 wt % In2 O3

SEM

In2O3

 

 

 

 

 

 

[139]

MFI

In

Exchange

 

 

 

 

 

 

MFI

In

Hydrothermal or

 

ESR, 115In NMR, 29Si NMR,

In O

 

 

 

 

 

 

[117]

 

 

Modification

 

Catalysis

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MFI

Cr

Hydrothermal

370

ESR

Cr2O3 (NaF medium)

 

[140]

MFI

Pt-Ga

Exchange

 

XPS, IR

NH4-[Ga]-ZSM-5

 

 

[115]

 

 

 

0.3–0.6 mmol g–1

 

+ Pt[NH3)4]Cl2

 

 

 

MFI

Mn

Exchange

IR, ESR, Mass Spectrometry

MnCl

 

, MnSO , Mn O ,

[141]

 

 

 

 

 

 

2

 

 

4

3

4

 

 

 

 

 

 

Mn(CH3COO)2

 

 

 

MFI

Ru

Hydrothermal

10–33

XRD, IR, SEM, XPS

K2RuO4, Pr4NRuO4

 

 

[142]

Zeolites in Substitution Isomorphous

377

Table 2 Isomorphous substitution in BEA zeolites

Zeolite

Substituting

Synthesis

Si/T or

Techniques of

Precursors

 

 

 

Refs.

 

element

 

T content

characterization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BEA

B

Alkaline Exchange

36.6–37.6 14.0–15.7

XRD, FTIR, MAS NMR, BET

NaBO2

 

 

 

 

[143]

BEA

B

Hydrothermal

 

11B NMR, REDOR

B(OH)

3

, Na

B

O

7

[87]

 

 

 

 

Acidity, n-butene, isomerization

 

 

 

2

4

 

 

BEA

B

Hydrothermal

0.85 wt %

H3 BO3

 

 

 

 

[102]

BEA

Al

Hydrothermal

14–42 14–23; 45 9.25

27Al NMR, FTIR

 

 

 

 

 

 

 

 

[105]

BEA

B, Al

Hydrothermal

0.85 wt %

Acidity, n-butene, isomerization

H3 BO3

 

 

 

 

[102]

BEA

Ga, Al

Hydrothermal

13.4–24.0

XRD, TA, SEM, IR

Ga(NO3)3

 

 

 

[145]

BEA

Ga

Hydrothermal

10, 28, 57

FTIR, TPD, adsorption

Ga2(SO4)3

 

 

 

[146]

BEA

Ga

Exchange

12.4, 16.1, 18.7

29Si NMR, 27Al NMR, XRD,

Ga

O

3

+ HZSM-5

[147]

 

 

(Galliation)

 

FTIR

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BEA

Ga

Alcaline Exchange

14.0–15.7

XRD, FTIR, MAS NMR, BET

NaGaO2

 

 

 

[143]

BEA

V

Adsorption in

0.05–0.5–1.5 wt %

UV-Vis, Photoluminescence

NH4 VO3

 

 

 

[148]

 

 

hydroxyl nests

 

 

 

 

 

 

 

 

 

 

 

BEA (CIT-6)

Zn

Hydrothermal

32

Multi NMR, BET

Zn(CH3COO)2

 

 

[149]

BEA

Sn

Hydrothermal

1.6 wt %

IR, Baeyer-Villiger oxidation

SnCl4

 

 

 

 

 

[150]

BEA

Fe

Hydrothermal

20–23

IR, SEM, Sorption

 

 

 

 

 

 

 

 

[151]

BEA

Fe

Hydrothermal

14–42 14–23; 45 9.25

27Al NMR, FTIR

 

 

 

 

 

 

 

 

[105]

BEA

Ti

Hydrothermal

 

XRD, Raman, IR, UV-Vis,

Ti(SO4)2

 

 

 

[152]

 

 

 

 

XPS, adsorption

 

 

 

 

 

 

 

 

 

BEA

Ge

Hydrothermal

 

Adsorption Synchrotron

 

 

 

 

 

 

 

 

[153]

 

 

 

 

Powder Diffraction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

378

.al et Nagy.B .J

Table 3 Isomorphous substitution in various zeolites

Zeolite

Substituting

Synthesis

Si/T or

Techniques of

Precursors

Refs.

 

element

 

T content

characterization

 

 

 

 

 

 

 

 

 

 

 

TsG-1

Ga

Hydrothermal

22/10

Sr2+ Ion Exchange

 

 

[154]

AST

Ge

Hydrothermal,

 

XRD, MAS NMR, SEM

GeO2

 

[155]

 

 

F-medium

 

 

 

 

 

AV-1

Y

Hydrothermal

8

Multi NMR, FTIR

Y2 (SO4)3

[156]

CIT-6 (BEA)

Zn

Hydrothermal

32

Multi NMR, BET

Zn(CH3COO)2

[149]

ETS-10

V

Hydrothermal

V/Ti = 0.87

MAS NMR, XRD, UV-Vis

VOSO4

 

[157]

ETS-10

Cr

Hydrothermal

Si/(Cr + Ti) = 4.5

EDX, XRD, SEM, BET, UV-Vis,

Cr2O3

 

[158]

 

 

 

 

EPR, MAS NMR

 

 

 

EUO

B

Hydrothermal

13–15

XRD, TG, MAS NMR

H3 BO3

 

[159]

FER

Ga

Hydrothermal

2–7 Ga/u.c.

27Al-, 29Si-, 71Ga NMR, XRD,

Ga(NO )

3

[160]

 

 

 

 

SEM

3

 

 

 

 

 

 

 

 

FER

B

Hydrothermal

4–19

XRD, MAS NMR

H3 BO3

 

[179]

H,Na-Y

Fe

Ion Exchange

 

ESR

FeCl3

 

[161, 162]

LEV

B

Hydrothermal,

9–27

XRD, MAS NMR, SEM

B2O3

 

[163]

 

 

F-medium

 

 

 

 

 

LTL

Fe

Hydrothermal

27.3–3.5

IR, TA, XPS, EM, Magnetic

K2FeO4

 

[164]

 

 

 

 

susceptibility

 

 

 

MEL

B-B,Al

 

0.25 wt %

51V NMR, ESR, UV-Vis, IR

 

 

[102]

MEL

V

Hydrothermal

100–400

VOSO

 

[165]

 

 

 

 

 

4

 

[166, 167]

MEL

V

Hydrothermal

40, 80, 160

XRD, IR, ESR, NMR, Catalysis

VOSO4

 

MOR

B, Al, Ga

Theoretical Study

 

[168]

MOR

Al, Fe

Hydrothermal

9.25

27Al NMR, FTIR

 

[105]

MTT

Al, Fe

Hydrothermal

14–42

27Al NMR, FTIR

 

[105]

MTW

Ga

Hydrothermal

70

XRD, IR, 29Si-, 74Ga NMR,

Ga(NO )

3

[169]

 

 

 

 

 

3

 

Acidity

Zeolites in Substitution Isomorphous

379

380

Table 3

(continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zeolite

Substituting

Synthesis

Si/T or

Techniques of

Precursors

 

 

 

 

Refs.

 

element

 

T content

characterization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MTW

Fe

Hydrothermal

40–90

XRD, FTIR, SEM

Fe(NO3)3

 

 

 

 

[170]

NCL-1

V

Hydrothermal

80–250

IR, ESR, NMR, Catalysis

 

 

 

 

 

[171]

Sil-1

Mn

Hydrothermal

258

FTIR, XANES, EXAFS

MnO

 

 

 

 

[172]

SSZ-24

B

Hydrothermal

 

11B NMR, REDOR

B(OH) , Na

B

O

7

[87]

 

 

 

 

27Al NMR, FTIR

3

2

4

 

 

TON

Al, Fe

Hydrothermal

14–23; 45

 

 

 

 

[105]

TS-1

Ti

Hydrothermal

8–256

XRD, FTIR, MAS NMR,

Ti(OBu)4

 

 

 

 

[173]

 

 

 

 

UV-Vis, ESR

 

 

 

 

 

 

Y

Ce, Co, Cu,

Exchange

 

Acylative cyclization

chlorides

 

 

 

 

[174]

 

Cr, La

 

 

 

 

 

 

 

 

 

Y

Fe

CVD

XRD, FTIR, TA, BET

[(C5H5 )Fe(CO)2]2

[175]

Y

Si

Solid-Solid

IR, MAS NMR, XRD, TA

(NH4)2SiF6

 

 

 

 

[176]

Y

Ga

Hydrothermal

1.85–2.18

MAS NMR, FTIR

Ga2O3

 

 

 

 

[177]

ZSM-12

V

Hydrothermal

88, 158, 322

ESR, NMR (29Si, 51V, 1H)

VOSO

 

 

 

 

[178]

 

 

 

 

 

4

 

 

 

 

 

.al et Nagy.B .J

Isomorphous Substitution in Zeolites

381

2.1.2 [Ga]-MFI

The initial gels have a general composition of 10SiO2 xMF – yGa(NO3)3 – 1.25TPABr – 330H2O where M = NH4, Na, K or Cs with x = 9, 18 and y = 0.1 and 0.3. The reactants were mixed in the following order: MF (M = NH4, Na, K, Carlo Erba and M = Cs, Sigma), distilled water, Ga(NO3)3 (Aldrich), tetrapropylammonium bromide (TPABr, Fluka) and fumed silica (Sigma) [183, 184].

2.1.3 [Fe]-MFI

2.1.3.1 Fluoride Route

The reactants were ammonium fluoride (Carlo Erba, RPE), sodium fluoride (Carlo Erba, RPE), potassium fluoride (Carlo Erba, RPE), cesium fluoride (Aldrich, purum), tetrapropyl ammonium bromide (TPABr, Fluka, purum), iron nitrate (Fe(NO3)3 · 9H2O, Merck, purum), fumed silica (Sigma) and distilled water [185, 186]. The molar composition of the starting mixture was:

10SiO2 xFe(NO3)3 · 9H2O – yMF – 1.25TPABr – 300H2O

where 0.1 ≤ x ≤ 0.3, y = 3 – 24 and M = NH4, Na, K or Cs.

The starting mixtures were prepared by adding the fluoride salt, iron nitrate, TPABr and the fumed silica to the distilled water in this order. After complete homogenization the resulting gels were placed in PTFE-lined 25 cm3 stainless-steel autoclaves. The samples were obtained by hydrothermal synthesis at 170 C for predetermined times. After quenching the autoclaves, the products were recovered, filtered, washed with distilled water and dried at 80 C overnight. The crystallization time was ca. 7 days for the sample with the smallest crystallization rate.

2.1.3.2 Alkaline Route

Batch composition: 1.0SiO2 – (xAl2O3 + yFe2O3) – 0.13Na2O – 52.0H2O – 0.125 template for [Fe,Al]-ZSM-5: x = 0.0025; y = 0.0025, 0.005, 0.01 and 0.002, for [Al]-ZSM-5: x = 0.01; y = 0, for [Fe]-ZSM-5: x = 0; y = 0.01 and 0.01333 [187–192].

Source materials: distilled water; waterglass (Aldrich, vide supra); colloidal silica (Aldrich, Ludox 40); iron(III) oxide (Aldrich, 99.98%); iron(III) oxide enriched in 57Fe to 80%; iron(III) nitrate nonahydrate (Aldrich > 98%); aluminum powder (Aldrich, 20 micron, > 99%); aluminum oxide trihydrate

382

J. B.Nagy et al.

(Hungarian origin); sodium hydroxide (Reanal, reagent grade); TPA bromide as template (Aldrich, 98%); perchloric acid, 70% (Aldrich, reagent grade); sodium perchlorate (Aldrich, 99%); hydrochloric acid 37% (Reanal, reagent grade); sulphuric acid 97% (Reanal, reagent grade).

Batch preparation recipe (for about 1214 g volatile-free zeolite): Prepare stock-solutions of iron (dissolve known amount of iron (III) oxide, or iron tracer in concentrated HCl at 120 C in a closed Teflon autoclave; or dissolve iron(III) nitrate in acidified water) and aluminum (dissolve aluminum powder in HCl diluted to 1 : 1). Save the Feand Al-contents, respectively, per gram of solution.

In order to simplify the description of recipes the exact amounts for the variable components will be summarized in Table 4 for various Si/Fe, etc., ratios.

Sixteen grams Aldrich-type waterglass (see Aldrich catalogue) + 140.9 g distilled water; stir and keep it in refrigerator overnight (solution 2). Blend appropriate amounts of stock-solution for iron (or aluminum, or iron and aluminum) with 5.8 g of 70% perchloric acid; keep in refrigerator overnight (solution 3). Under vigorous mixing add to (solution 3) so much of (solution 2) to reach pH = 4.5 (use pH paper). Admix to remaining (solution 2) 19.2 g cool Ludox 40 and continue the neutralization of (solution 3) while maintaining agitation. The meanwhile solidified gel should be broken up. Add 6.7 g TPA bromide, 2 g sodium chloride as solid and 0.2 g ZSM-5 seed (the best choice is silicalite-1 in the as-synthesized (AS) state, ground carefully in a porcelain mortar using a few drops of water).

The pH of the slurry should be between 10.5 and 11.0. Adjust the pH by either a few drops of perchloric acid or 50% sodium hydroxide. In a stainlesssteel shaker, mill the slurry for at least 5 h using similar balls. Check (and adjust if necessary) the pH.

Crystallization vessel: Teflon-lined autoclave(s); temperature: 160 C; time: depending on the degree of substitution 612 h, without agitation. Product recovery: after cooling, filter and wash with warm water (to pH = 10.5). Dry

Table 4 Amounts (g) of Al and/or Fe per batch at various slurry compositions

Sample

 

 

Fe [g]

 

 

Al [g]

 

Si/Fe = 200 Si/Fe = 100 Si/Fe = 50

Si/Fe = 37.5

Si/Al = 200 Si/Al = 50

 

 

 

 

 

 

[Fe,Al]-ZSM-5 0.057

0.027

 

0.114

0.027

 

0.228

0.027

[Fe]-ZSM-5

0.228

 

0.342

[Al]-ZSM-5

0.108

 

 

 

 

 

 

 

Isomorphous Substitution in Zeolites

383

in air thermostat at 110 C. Save the zeolite product as such or apply “caring calcination” [193]. Besides the zeolitic crystals, the cool mother liquor contains 23 cm-long needle-like crystals of sparingly soluble TPA perchlorate. It is easy to separate them by a tea-strainer. Another method of preparation was used in the alkaline route [188].

Two different hydrogel systems were studies. The first system was prepared from the following initial reaction mixture:

(A) xNa2O–yTPABr–zAl2O3 –SiO2 qFe2O3 pHA–20H2O,

where x = 0.1 – 0.32; y = 0.02 – 0.08; z = 0 – 0.05; q = 0.005 – 0.025; the ratio p/q = 3 and HA stands for H2C2O4 or H3PO4.

The second system was prepared from the following initial reaction mixture:

(B) 0.16Na2O–xTPABr–yEG–zAl2O3 –SiO2 qFe2O3 pHA–10H2O,

where x = 0 – 0.08, y = 0 – 6.0; z = 0 – 0.05; q = 0.005 – 0.1; the ratio p/q = 3 and HA stays for H2C2O4 or H3PO4.

2.1.4 [Fe]-BEA

The following reagents were used: 20% tetraethylammonium hydroxide (TEAOH), in H2O (Aldrich), 25% TEAOH, in methanol (Aldrich), tetraethyl orthosilicate (TEOS, Aldrich) as silicon source, Fe(NO3)3 · 9H2O (Merck), Al(OH)3 (Pfaltz & Bauer), NaOH (Carlo Erba) and ultradistilled water [194]. The following general composition was used for [Fe]-BEA:

40SiO2 xFe(NO3)3 · 9H2O – yTEAOH – 4NaOH – 676H2O, with x = 0.38, 0.40, 0.44, 0.45, 0.49, 0.51, 0.60, 1.02, and y = 10.88, 13.6, 16.3 and 19.04.

The experimental procedure was carried out as follows: solution A was prepared by adding TEOS to aqueous solution of 20% TEAOH under magnetic stirring during 1 h. Solution B was prepared by adding NaOH to 20% aqueous TEAOH solution under magnetic stirring: Solution C was obtained by introducing Fe(NO3)3 · 9H2O into ultradistilled water under magnetic stirring during 10 min.

Solution A is added dropwise to solution C. It is important to fully dissolve solution A in solution C. The obtained solution is solution D. Finally, solution D is added slowly to solution B under magnetic stirring leading to a light yellow gel: The system is stirred for 24 h. This allowed the ethanol formed during the hydrolysis of TEOS to evaporate.

384

J. B.Nagy et al.

2.1.5 [Fe]-MOR

The zeolite samples [Al]-BEA and [Fe,Al]-BEA were also prepared starting from the following molar composition [195]:

(B) xNa2O–0.2TEAOH–yAl2O3 zFe2O3 wC2H2O4 –SiO2 –20H2O,

where TEAOH stands for tetraethylammonium hydroxide, C2H2O4 is oxalic acid; 0.1 ≤ x ≤ 0.15; 0.015 ≤ y ≤ 0.02; 0 ≤ z ≤ 0.015, w/z was constantly equal to 3.

The zeolite samples of [Al]-MOR and [Fe,Al]-MOR were prepared starting from the following molar composition:

(A) xNa2O–0.2TEABr–yAl2O3 zFe2O3 wC2H2O4 –SiO2 –20H2O,

where TEABr stands for tetraethylammonium bromide, C2H2OO4 is oxalic acid; 0.1 ≤ x ≤ 0.27; 0.015 ≤ y ≤ 0.025; 0 ≤ z ≤ 0.025, w/z was constantly equal to 3.

The hydrogels were obtained by adding precipitated silica (BDH) to a previously prepared homogeneous solution consisting of the organic compound (Fluka), sodium hydroxide (Carlo Erba), sodium aluminate (Carlo Erba) and distilled water. In another beaker, a solution of an iron complex with oxalic acid was prepared, starting from iron nitrate (Carlo Erba) and oxalic acid (Carlo Erba). This solution was slowly added to the hydrogel, which, after 1 h of homogenization, was transferred into autoclaves.

2.1.6 [Co]-MFI

Two different gels were prepared [196, 197]. For the first series of gels (A), sodium silicate was used and the final batch compositions were: 35SiO2 xNa2O – yCo(CH3COO)2 · 4H2O – 3.4TPABr – 8.4H2OSO4 – 808H2O with x = 11, 12.9 and 15 and y = 0.5, 1, 1.5 and 2. The second type of gels (B) was prepared using colloidal silica with a global composition: 35SiO2 xNa2O Co(CH3COO)2 – 3.4TPABr – 808H2O with x = 0, 3, 6, 9 and 12. The gels, after complete homogenization, were placed in PTFE-lined 25 cm3 stainless-steel autoclaves. The Co-containing samples were obtained by hydrothermal synthesis at 170 C after 2 days. After quenching the autoclaves, the products were recovered, filtered, washed with distilled water and finally dried at 80 C overnight. The samples were characterized by various physico-chemical techniques such as XRD, chemical and thermal analysis, XPS and diffuse reflectance UV-visible spectroscopy.