
Theory and Applications of Computational Chemistry / sdarticleindex
.pdfIndex
hyperfine splitting constants 1135 molecules 77, 116, 478, 730–4, 737 multiconfigurational quantum chemistry
730–4
see also CH· · ·O hydrogen bonds hydroperoxy radicals 401, 402 p-hydroxybenzilideneimidazolone 274,
276–7 Hyleraas correlation 93
hyper-Rayleigh scattering 49 hyperconjugation 307, 847 hypercoordinated species 653–4
hyperfine splitting constants 1099–100, 1102, 1133–6
hyperpolarizability 941–2, 1026–33, 1212 hypochlorous acid 405–6, 411–13
I–V see current-voltage IBM
card 2–3 computers 1177–8 Kingston 91, 104–8
molecular package (IBMOL) 100–2, 106, 1012
Poughkeepsie 104–5 Research Laboratory 97–8 San Jose 97–105
IBMOL 100–2, 106, 1012
IEPA see independent electron pair approximation
IET see inelastic electron tunneling IM see intermediate Hamiltonians imidogen helium interaction 1068–9
IMK see Ishida, Morokuma and Komornicki importance sampling 428
improper blue-shifting 848 impulse approximation 491–3 IMS see incomplete model space inactive excitations 593–9 inactive orbitals 725
incomplete model space (IMS) 137–8, 469, 473–6, 581–9, 605–11
independent electron pair approximation (IEPA) 1194–5
independent-particle models (IPM) 117–18 indium 314–22, 332–42
INDO see intermediate neglect of diatomic differential overlap
induced-fit effects 45
1287
induction 920–2, 931–2, 1053–4 dispersion 928, 946–7, 967, 1047
energy 926, 930–1, 935, 938–42, 977, 1057 interaction 938, 956, 979–80, 1072
inelastic electron tunneling (IET) 373–4 infrared (IR)
intensity 178, 181–5, 1176–7 spectroscopy 189, 263, 831–3, 1062
inherent structures 1002 inner-core states 1100, 1125–8 inner-shell
ionization 1099–100, 1102, 1125–8 satellite spectra 1125, 1126–7
instability 129, 208
instantaneous interaction energy 291–3 integral approximations 560–70
CNDO 560–3, 568, 834, 1016 INDO 560–3, 567, 569 NNDO 560–3, 565–7, 569–70 ZDO 1148
integrals see individual types intensive energy 445, 455, 461 inter-isomeric equilibrium 906 inter-isomeric separation energy 892
interaction energy 291–367, 766, 919–58, 1000–1
interallylic distances 860, 863, 865–7, 869, 871 interatomic pair correlation 1051
interchange theorem 1204, 1206 intermediate Hamiltonians (IM) 585 intermediate neglect of diatomic differential
overlap (INDO) 560–3, 567, 569 intermediate normalization 138, 475, 510, 581,
607
intermolecular forces/interactions 919–58, 982–3, 1047–72
intermolecular perturbation 768 intermonomer separations 920–1, 929–30,
1128–33
internal coordinates 201–2, 213–15, 228–9 internally folded density 489
interpolation 220–4
intramolecular correlation 927–32, 1058 intramolecular dynamics 416–17 Intramolecular Vibration Energy
Redistribution (IVR) 167–8 intramonomer correlation 928, 932–3,
1059–61 intrinsic barriers 641–2
1288
intrinsic non-Rice–Ramsperger–Kassel– Marcus kinetics 403–5, 408, 417–19
intrinsic reaction coordinates (IRC) 417–19 intruders
coupled-cluster theory 136–7, 139, 472–6 multireference methods 472–6, 584, 597–8,
608
size-consistent state-specificity 584, 597–8, 608
inversion symmetries 490 iodine 303–5, 526–9 ionic
bonding 293
intermediate curves 652–6 structures 526–7, 652–6, 749
ionization energy 1145–6 ionization potentials (IP) coupled-clusters 1211
equations of motion 443–61, 1211
G2 and G3 theories 793–4, 797, 802, 805–9 valence bond diagrams 649–50
ionization spectra 1099–102, 1106–12, 1125–8
ionophores 965, 980–3 ions, active space 741
IP see ionization potentials
IPM see independent-particle models IPR see isolated pentagon rule
IR see infrared
IRC see intrinsic reaction coordinates iridium bonding 326–32
iron 332–42, 347–54, 779–80, 1035 irreducible representation 21, 27, 32, 295,
319–24, 1160
Ishida, Morokuma and Komornicki (IMK) algorithms 233–4
isoelectronic cations 494
isoelectronic species bonding 296–302 isolated pentagon rule (IPR) 892, 894–5,
898–9, 901–3, 905 isomer relative stability 892–3 isomeric endofullerenes 891–907 isomeric fullerenes 891–907 isomers
book 1006
cages 875, 883–7, 891–907, 969–73, 996–7, 1006
prism 969, 996–7, 1002, 1006 ring 996–7
Index
isotope effects 67, 77, 574, 862, 865, 871 iterative subspaces 203, 207–9
IVE efficiency 419
IVR see Intramolecular Vibration Energy Redistribution
Jacobian factor 43 Jacob’s ladder 678
Jahn–Teller effect 659, 1020–1, 1160 jellium 59
Jeziorski–Monkhorst ansatz 469, 472–5, 582, 585–6
Jordon transformations 486
Keldysh Green functions 385–7 Keldysh loops 373–82
Ketosteroid Isomerase (KSI) 982–3 kinetic balance 543–4
kinetic control 906–7 kinetic effects 865
kinetic energy 13–16, 677–9, 683–4, 696–7 density 531, 678, 683, 696–8, 702
kinetic isotope effects 67, 77, 574, 862, 865, 871
Kohn–Sham
density matrices 501, 677–8, 682 DFT 669–717, 1064, 1081, 1083 equations 529, 674–5, 691 exchange-correlation 674–5
methods 542–3, 673–5, 677, 1083, 1087 operators 1146
orbitals 501–2, 674–8, 682, 690, 696–8, 714
static isotropic polarizability 540 theorem 540
wave functions 674 KOMMUTE 1198
Koopmans’ theorem 144–5, 450, 454, 493, 726
extended 454, 461
Kramers theory 81, 100, 757, 1048 krypton crystals 945–6
Kubo formulas 431–2
La@C82 892, 901, 905–6
laboratory of molecular structure and spectra (LMSS), Chicago 92–5
ladder diagrams 124–5 Lagrange multipliers 133, 429
Index
Lagrangians 18–19, 32–4, 210–12 Langevin equations
generalized 81 model 435–6
Langreth–Mehl (LM) functionals 695 lanthanides 741, 743–4
lanthanum 892, 901, 905–6 Laplacian of the density 702–3
large molecule anharmonic vibrational spectroscopy 165–90
lasers 149–62
lattice Boltzmann method 436 lattice gauge theory 135
lattice quantum field theories 135 lattice-gas automation 436
LCAO see linear combination of atomic orbitals
LCGTO see linear combination of Gaussian type orbitals
LDA see local density approximation lead
bonding 310, 314–22, 342–7 fluoride 725, 741, 747–8, 756–60 oxide 741–2
leapfrog transformation 897 Lebedev grids 1083, 1088 LEDs 1033, 1040–1
Lee–Yang–Parr correlation functional (LYP) 539, 715–16, 1085, 1165
see also B3LYP
Leffler–Hammond postulate 636 Lennard–Jones fluids 427 Lennard–Jones parameters 433–4
Levenberg–Marquard algorithm 1086 Lewis acids/bases 979
Libby’s hypothesis 1035–6
Lie groups 21, 23, 25, 27–9, 32 Lieb–Oxford bounds 1084 ligand binding 44
ligand selectivity 851
light-emitting diodes (LEDs) 1033, 1040–1 linear combination of atomic orbitals
(LCAO) coupled-cluster theory 117
DFT deMon codes 1081, 1083–4, 1091 polymer chains 1011–12, 1015
linear combination of Gaussian type orbitals (LCGTO) 1083–6
linear polyenes 129
1289
linear response theory 431
linear scaling 571–2, 574, 1180–1, 1214–15 linear synchronous transit (LST) 221–3 linked cluster theorem 122
linked diagrams 121–2, 1066, 1193–8, 1213 Liouville equation 435
Liouville space pathways (LSP) 373–82, 385–9, 393–4
Lipkin–Meshkov–Glick model 135 Lippmann–Schwinger equation 470–1 liquid argon 946
liquid helium meniscus 1048 liquid-vapour equilibrium 832–3
liquid water 104, 427–8, 936–7, 954–8, 1001–3
lithium bonding 305–7, 314–22 lithium-hydrogen 612–13, 619–24, 627–9 lithium trimers 948–9
LM see Langreth–Mehl
LMO see localized molecular orbitals LMP2 see localized second-order
Møller–Plesset perturbation
LMSS see laboratory of molecular structure and spectra
local [tau] approximation (LTA) 683–4, 698 local density approximation (LDA)
asymptotic corrections 690 DFT 530, 1081, 1083–4, 1087
DFT deMon codes 1081, 1083–4, 1087 exchange-correlation 680, 682–6, 697–8 intermolecular forces 1064–5 long-range corrections 529
Perdew–Wang scheme 685, 693, 707, 709, 715, 1084
Perdew–Zunger scheme 531, 679, 684 systematic constraint satisfaction 697–8 Vosko–Wilk–Nusair 530, 684–5
local electric fields 55–9 local hybrids 711–12
local spin-density approximations (LSDA) Barth–Hedin scheme 677, 685, 697–8,
709–10, 1082 DFT 678, 679, 1084 empirical fits 707
exchange-correlation 678–9, 683, 685, 715–16
hybrid exchange functionals 709 Kohn–Sham DFT 678, 679 Vosko–Wilk–Nusair 530, 684–5
1290
localized molecular orbitals (LMO) GAMESS 1170–1, 1181 malonaldehyde 1128–9 semiempirical quantum-chemistry 572 valence bonds 523
localized orbitals 523, 726, 1071, 1170–1, 1176–7
localized second-order Møller–Plesset perturbation (LMP2) 998–1006
localized surface plasmon resonance (LSPR) 51, 54, 60
London forces 1048 lone pairs 517
aqueous clusters 971
CH· · ·O hydrogen bonds 848–50 energy decomposition 299–303, 313–14 Fenske–Hall molecular orbitals 1157 multiconfigurational quantum chemistry
748
long time tail 427
long-range corrections/interactions 529, 532–40, 713–14
low-energy isomers 996
LSDA see local spin-density approximations LSP see Liouville space pathways
LSPR see localized surface plasmon resonance LST see linear synchronous transit
LTA see local tau approximation luminescent jellyfish 269–70, 274, 276–9 LUMO
energy decomposition 311, 313–14, 329 Fenske–Hall molecular orbitals 1150,
1157–8 GAMESS 1172–3
weakly bound clusters 97
LYP see Lee–Yang–Parr correlation functional
magnesium 314–22, 499
magnetism 47–64, 776–7, 780–1, 983–7 insulating states 775
main frame computers 1053–9 main-group compounds 291, 294–326 malonaldehyde 1128–9
adiabatic excitation energies 1128–9 optimized structures 1128–9
manganese 1143, 1151–6 manganese tetraoxide 1116–18
manganese-nickel interactions 1153–4
Index
many-body decomposition 998–9 many-body expansions, convergence 920–6,
937, 947–9, 957 many-body forces 919–58
GAMESS 1172–3
trimers 922–3, 932–42, 943–57 water 925, 928–42, 947–8, 951–7 many-body perturbation theory (MBPT)
119–28, 133, 508–23, 1172–3, 1193–7
many-electron Hamiltonian 550–3 Marcus Electron Transfer theory 1033–41 Marcus equations 636, 641
Markov chain 428 mass polarization 13 matrices
charge density 728 conjugate density 572 coupling elements 241–2 Fock 565, 1016
polymer chains 1016
reduced density 672, 677–9, 727–30 response density 1205–6
see also density matrices matrix element integration 263–4
Matsububara imaginary time 374–5 maximum overlap orbitals 129 Maxwell’s equations/theory 48, 51 MBPT see many-body perturbation theory MC see Monte Carlo
MC QDPT see multi-configuration quasidegenerate perturbation theory
MCSCF see multi-configurational self-con- sistent fields
MD see molecular dynamics
mean absolute deviations 793–4, 797–807 mean field methods 434
medicinal chemistry 574
MEG see mixed exponentially generated melting transition 997
memory 5–6
MEP see minimum energy paths mesoscopic dynamics 435–7
meta generalized gradient approximation 678, 681, 708–16
metal arene complex bonding 360–6 metal nanoparticles 47–64
metal surfaces 813–29 metallacyclic compounds 347–8
Index
metallic clusters 774–5, 974–6 metallic state 774–6 metallocenes 314–22, 360–6 metallofullerenes 891–2, 901–7 metals, polymer chains 1034–5 metastable anions 457–60
methane (CH4) 258–60, 835–6, 840–5 methanimine 101–2
methanol 182–4, 261–2, 808, 840–1 method of moments coupled-clusters 469 methoxy radical dissociation energy 808 methyl alcohols 417–19
methyl diazenyl diradical 273 methyl fluoride 841–844–5 methyl–carbonyl bonds 155 N-methylactamide (NMA) 182–3 methylene amidogen 257–8 methylene bonding 342–7
methylene singlet-triplet splitting 513–14 methylidynes 360–6
methylphenol proton affinities 808–9 N-methylthioacetamide (NMTAA) 287 Metropolis Monte Carlo simulations 426, 428,
1006
MHQC see 2,11-dithio[4,4]metametaquino- cyclophane
midbond functions 929 Mie theory 51 Mile-Stoning 431 MINDO 893, 894–5
MINDO/3 calculations 862–3 minicomputers 4–6
minima, potential energy surfaces 195–218 minimal electron nuclear dynamics 32–7 minimum energy paths (MEP) 71–6, 219,
230–41, 270–2
minimum orbital deformation (MOD) 1103–5, 1128–9
mixed exponentially generated (MEG) 1105 mixing exchange functionals 681, 708–14 MM see molecular mechanics; MULTIMODE MMP see multiple multipole method
MNDO 561–70
MO see molecular orbitals
MOD see minimum orbital deformation mode transitions 186–7
model core potentials 1084, 1089, 1185 model holes 699–701
model pair correlation functions 703–4
1291
model space 583–630
complete 136–8, 471–8, 582, 587–93, 606–10, 629
general 138–9, 630
incomplete 137–8, 469, 473–6, 581–9, 605–11
Modern Techniques in Computational Chemistry (MOTECC) 106
MOLCAS software 754, 757 MOLDEN 1087
molecular currents 373–95
molecular devices 269, 285, 374, 814, 963–89 molecular dynamics (MD) 425–38, 875–87
ab initio methods 434
carbon nanostructure self-assembly 875–87 classical 428–32
coarse grained dynamics 435–7 controls 149–62
fullerene formation 877 mesoscopic dynamics 435–7 non-covalent binding affinity 44–5 photonic reagent control 149–62 quantum mechanics 432–5, 875–87 simulations 104–5, 875–87, 1090
molecular electronics 813–29
molecular excited state geometries 1099–100, 1102, 1128–33
molecular flippers 965, 987–9 molecular Hamiltonians 12–17 molecular integral algorithms 1083 molecular junctions 373–95
molecular mechanics (MM) 197–8, 223–4, 1181–4
molecular orbitals (MO)
correlation diagrams 315–17, 323, 361–4, 366
coupled-cluster theory 117 exact relationships 766–7 fragment 1180–1
highest occupied 977, 1150, 1154–63, 1172–3
molecular system simulations 90–2 multiconfigurational quantum chemistry
725–6, 727–30 orbital interaction 766–72 polymer chains 1012–13
self-consistent fields 560–2, 570–1, 576, 1143, 1144
semiempirical quantum-chemistry 560–2
1292
valence bonds 636, 643 weakly bound clusters 977
see also localized molecular orbitals molecular recognition 41–2, 836, 964 molecular sensors 820–7, 828–9 molecular spectroscopy 1099–137 molecular structure and spectra 92–5 molecular system simulations 89–111
molecular theory, dynamical, time-dependent 9–39
molecular wires 374, 382–4 molecule-electromagnetic field interactions
47–64
molecule-lead self energies 389–92 molecule–metal systems 60–3 MOLEKEL 1087
Møller–Plesset (MP) Brillouin-Wigner perturbation 470 equations of motion 450–3
G2 and G3 theories 785–7, 790–9, 801–3, 805–9
partitions 600, 602, 612, 625, 627 Møller–Plesset second-order perturbation
theory (MP2) 744, 820, 825–6, 997, 1172–3
Møller–Plesset third-order perturbation theory (MP3) 785, 796–7, 801–3, 805–7, 1063
MOLPRO software 760 molybdenum bonding 347–60 molybdenum tetraoxide 1116–19 moments 469, 1058–9
see also dipole moments momentum 483–502
density 487–93, 499–502
space wave functions 484–6, 495–6 mono-determinant valence bond wave
functions 664–5 mono-hydrated hydroxide ions 262–3 monosubstituted benzenes 1108–9
monovalent atom bond exchange 658–9 Monte Carlo (MC) simulations 995–1006
ab initio 999
diffusion 172–3, 262–3, 948, 953 direct simulation method 436 fullerene formation 877 Metropolis 426, 428, 1006
molecular dynamics 425–6, 428, 430, 433 molecular systems 104–5
Index
umbrella sampling 430, 574 water 953–7, 995–1006
MoO4-nS2n- (n=0-4) 1115–19 MOPAC 893
Morokuma decomposition/partitioning 843, 844–5
MoSeO24- 1115–19
MOTECC see Modern Techniques in Computational Chemistry
MP see Møller–Plesset
MP2 see Møller–Plesset second-order perturbation theory
MP3 see Møller–Plesset third-order perturbation theory
MQC see 2,11-dithio[4,4]metametaquino- cyclophane
MR see multi-reference
MR CC see multi-reference coupled-clusters MR-CI see multi-reference-configuration
interaction
MRMP see multi-reference Møller–Plesset perturbation
MS-Xa see multiple scattering-Xa MT see multi-dimensional tunneling Mu¨ller–Brown surfaces 239 Mulliken populations 1148–9
multi-configuration quasi-degenerate perturbation theory (MC QDPT) 508–23
multi-configuration-based approximations 454–5, 1066
multi-configurational quantum chemistry 725–61
active orbitals 725, 727, 729–30, 740–4 CASPT2 725, 744–8, 754–7, 761 CASSCF 725, 729–30, 739–48, 754–7,
760–1 degeneracy 734–8
dynamic correlation 744–6 hydrogen molecules 730–4 multiconfigurational wave functions
738–44
near degeneracy 734–8
relativistic regimes/effects 747–8, 756–60 second-order perturbation 744–6
wave functions 738–44 multi-configurational self-consistent fields
(MCSCF)
electronic structure 508, 1169–72, 1178, 1184
Index
GAMESS 1169–72, 1178, 1184 intermolecular forces 1051–2 molecular system simulations 95–103,
109–11
wave functions 738–9 multi-dimensional tunneling (MT) 68, 82–3
approximation 74–5, 82 large-curvature tunneling 74–5 optimization 74–6, 82–3 reaction path curvature 74 small-curvature tunneling 74
multi-electron processes 1128–32 multi-particle collision model 436 multi-reference coupled-clusters (MR CC)
135–9, 465–79
multi-reference Møller–Plesset perturbation (MRMP) 508–23
multi-reference (MR) equation-of-motion 1210 GAMESS 1172, 1174 perturbation 508–23
SAC–CI method 1100, 1105 second-order perturbation 1172 size-consistent state-specificity 581–631
multi-reference-configuration interaction (MR-CI)
coupled-clusters 118–19 GAMESS 1172, 1174 intermolecular forces 1066 momentum density 500–1 SAC–CI method 1100
multi-state CASPT2 746 MULTIMODE (MM) 251, 254–63 multiple bonds 303, 305, 308–10, 1105,
1173
multiple multipole method (MMP) 50 multiple nonpolar bonding 308–9
multiple scattering-Xa (MS-Xa) method 1080, 1081–83
multiple time step integrators 430 multiplicative scaling 803–7
multipole expansion 929, 944, 1015, 1053–61, 1070
multipole moments 133, 931–3, 938–42, 1057, 1070–2
dipoles 930, 1113–14 induced 931, 938, 940–1
permanent 931, 938, 940, 1057 quadrupole 824
1293
N-electron systems 29–32 N-methylthioacetamide (NMTAA) 287 n-mode coupling 255–60
nanodevice design 963–7, 983–7 nanomaterials 963–7, 978–9, 983–7 nanoparticles 47–64, 574–5 nanotechnology 813–29
nanotubes 820–9, 875–87, 963–7, 983–7 natural bond orbitals 842, 848
natural linear scaling CC (NLSCC) 1214 natural orbitals (NO) 726–30, 733–4,
749–51
coupled-cluster theory 118–19 equations of motion 454
Navier-Stokes equations 89, 436–7 n-body decomposition 998–9
near degeneracy 98–9, 101, 734–8 near-equilibrium trimers 932–7 NEB see nudged elastic band
Nee´l states 777
negative differential resistance 817
NEGF see non-equilibrium Green Functions neglect of diatomic differential overlap
(NNDO) 560–3, 565–7, 569–70 neighbor lists 427
NEMD see non-equilibrium molecular dynamics
Nesbet’s formula 1194, 1195 neutral radical/soliton effect 1022–3 neutral water clusters 968–9 neutron diffraction 835, 837 Newton methods 203–7
nickel 332–42, 1143, 1151–6
nickel tetracarbonyl, (Ni(CO)4) 340–1, 1099–101, 1120–1, 1137
nitric acid 186–7 nitrile-water complexes 184–5 nitrogen
energy decomposition 296, 297–309, 311–14, 360–6
equations of motion 458–9 helium interaction 1068–9 hyperfine splitting constants 1135 momentum density 499–500
nitrogen dioxide 410, 412, 414, 820 nitrogen–copper distances 61–3
nitrosyl hydride 401, 402
NLSCC see natural linear scaling CC NMA see N-methylactamide
1294
NMR see nuclear magnetic resonance NMTAA see N-methylthioacetamide NNDO see neglect of diatomic differential
overlap
NO see natural orbitals
Nobel Prize in Chemistry 1033–4 noble gases 1062
noble metal clusters 974 non-additivity 791–2, 795, 919–58
forces 920–6, 930–3, 937–8, 944, 954–5 potentials 920–1, 925, 942–6
non-adiabatic coupling 9–16, 36–7, 919 non-adiabatic methods/theory 9–39, 1173–5 non-canonical transformations 429 non-covalent binding/bonding affinity 41–5 non-covalent interactions see intermolecular
forces
non-degenerate perturbation 768–9 non-equilibrium dynamics 887 non-equilibrium Green Functions (NEGF)
373–95
non-equilibrium molecular dynamics (NEMD) 432
non-equilibrium solvation 81–2 non-equivalent orbital interactions 778–80 non-Hermitian Hamiltonians 136, 457, 746,
1209
non-IPR 898–901, 907 non-linear excitations 1025–33
non-linear optics 47–9, 963–5, 986, 1025–33 non-local DFT levels 296
non-Newtonian equations 429 non-polar bonding 305–10
non-Rice–Ramsperger–Kassel–Marcus (non-RRKM) kinetics 400–20
normal coordinates 252 normal modes 251–2, 264–5
normal versus counterintuitive orbital interaction 770–2
normalization 692–4 Bloch 136
intermediate 138, 475, 510, 581, 607 nuclear curvature 1030, 1032
nuclear degrees of freedom 14–17 nuclear energy derivatives 1175–6
nuclear magnetic resonance (NMR) 902–3, 905, 1212
chemical shifts 570–4, 843–5, 1101, 1115–20
Index
transition metal complexes 1101–2, 1115–20
nuclear matter 124, 125–8, 135 nucleic acids 104, 574, 834–7, 851 nucleophiles 647–50, 654–7, 661 nudged elastic band (NEB) theory 226 number density 484, 490–1, 495 number operator 591
numerical integration 93, 232–4, 415, 714, 1083–9
numerical performance 611–29 numerical stability 1088 NuMol 1085
O–H stretch frequencies 969–71 occupation numbers 726–9, 733–4, 750–1 occupation restricted multiple active spaces
(ORMAS) 1169 octahedral complexes 322, 329 octal row bonding 305–7 OLEDs 1033, 1040–1 oligopeptide 286–7
OM1, OM2 & OM3 semiempirical methods 567
OMT see optimized multidimensional tunneling
one-dimensional reciprocal space 1014 one-electron
Hamiltonians 766–72 momentum density 487–8, 490 theory 774–5
ONIOM method 820–3, 829
open-ended single-walled carbon nanotubes 875–7, 880–7
open-shell systems
anharmonic vibrational spectroscopy 187–8
clusters 948–51
intermolecular forces 1065–6, 1068–9 non-equivalent orbitals 778–80 size-consistent state-specificity 584 three-body interaction energies 948–51
operators
forms 1205–7 rank 448–9
see also individual operators optical properties 1025–33
extinction 47, 49–50–4 hyper-Rayleigh scattering 49
Index
non-linear 47–9, 963–5, 986, 1025–33 scattering 47–54, 60, 77, 491–3, 500 surface enhanced Raman spectroscopy 49,
59–63
optimal control 151–60 optimized effective potential 677
optimized multidimensional tunneling (OMT) 74–5, 83
Optimized Valence Configuration (OVC) 738 optimized virtual orbital space (OVOS) 1215 orbital degeneracy 948–51
orbital expansion coefficients 101 orbital interaction
concepts 765–74, 778–80 counterintuitive 770–2 effective Hamiltonians 766–72
electron-electron repulsion 772–4, 778–80 energy decomposition 291–367
kinetic energy density 677–9 non-equivalent 778–80 normal 770–2
perturbation 767–70
reduced density matrices 677–9 two-electron two orbital 781
orbital invariance 582, 586–9, 603–5, 630, 741–2
orbital mixing 765–6, 772, 782–3 orbital occupation 765–6, 772, 774–5 orbital ordering 780–1
orbital relaxation 298, 332, 928, 1126, 1206 orbital selection rules 651–2
orbital symmetry 641 orbitals
active 725, 727, 729–30, 740–4 atomic 117–18, 458, 749–50, 1147–8 Brueckner 794
Dyson 493–500 external 513
fragment 650–2, 1180–1 inactive 725
localized 523, 726, 1071, 1170–1, 1176–7 maximum overlap 129
natural bond 842, 848 orthogonal 524
Slater 93, 95, 296, 1081
see also molecular orbitals; natural orbitals ordinary differential equations 232
Organic Electroluminescent Diodes (OLEDs) 1033, 1040–1
1295
organic molecules 742, 748, 751–6 organic nanotubes 965
ORMAS see occupation restricted multiple active spaces
orthogonal orbitals 524 orthogonalization corrections 566–7 oscillators
field operators 25
harmonic 22–9, 165–6, 252–3, 893, 1031 strengths 534–7, 755, 1048, 1106–7,
1120–2
osmium 326–32, 347–54, 1116–18
OVC see Optimized Valence Configuration overlap integrals 117, 766–9, 776–7
many-body forces 927, 932, 953 molecular systems simulations 93 semiempirical quantum-chemistry 563–6
overlap matrices 1016 overtones 186–7
OVOS see optimized virtual orbital space oxidative addition reactions 646–7 oxohydrocarbons 837
oxygen
energy decomposition 305–7 hyperfine splitting constants 1135 multireference coupled clusters 471–2 oxygen–oxygen partial RDF 1002–3 sensors 820–5
see also CH· · ·O hydrogen bonds ozone, O2 748, 749–51
pbonds 300–14, 324–6, 336–45, 356, 647, 657
pspace 484–6, 487–8, 495–6
p-based materials 981–2 p-body decomposition 998–1002
p-conjugated organic molecules 1101–2, 1106–12
p-conjugational stabilization 878–9 p-electron densities 987–9
p-electron semiempirical quantum-chemistry 560
p-p interactions 979–80 p-radicals 777–8 p-system clusters 976–80 PA see proton affinity pair density 672
short-range behavior 700 spherically averaged 700
1296
pair distribution functions 672, 703–4 pair natural orbital methods 1055 pair-wise coupling 180
Pairwise Distance Directed Gaussians (PDDG) 568–9
pairwise-additivity 919–58 interactions 171, 176, 919–58
potentials 920, 924–6, 946, 950–7, 1060–2 Paldus–Weyl dimension formula 118 palladium 332–42, 1157–63
parallel computing 1177–80 architectures 5, 103
parameterization 559, 563–76, 684–6, 695–7, 707–10
general-purpose 559, 568–9, 576 special-purpose 559, 569–70, 576
Pariser–Parr–Pople (PPP) method 129, 560 parity violation 135
particles
cubes 51–2, 56–7 cylinder 51–2, 56–7 molecular dynamics 436–7 oblate 51–3
particle mesh method 428
prisms 51–2, 56–8, 969–70, 996–7 prolate 51–2
pyramid 51–2, 305, 311, 1111–12 shape/size effects 47–59
spherical 48–53, 56–9 spheroids 51–3, 170 tetrahedron 52–7 triangles 50, 52–3, 58
truncated tetrahedron 55–6 partitioning 291, 295
partition functions 70–9, 433, 893, 906 anharmonicity 73, 78–9, 1175 internal coordinates 73, 76
Partly Separable VSCF (PS-VSCF) 179–80 path optimization 224–7
Pauli repulsion 291–367, 840, 843, 844, 1053–4
PCM see Polarizable Continuum Models PDDG see Pairwise Distance Directed
Gaussians peapods 891
peer-reviewed papers 835–6 Peierls distortion 1022
pentagon junctions 894, 898–900 pentamers 954, 957, 968–9
Index
peptides 987
peptidomimetic polycyclic structures 285–7 Perdew–Wang scheme 685, 693, 707, 709,
715, 1084
Perdew–Zunger scheme 531, 679, 684 Perdew’s Jacob’s ladder 678
performance, size-consistent state-specificity 611–29
pericyclic reactions 270, 860, 864, 871 periodic band structures 1014 perturbation
degeneracy 179–80, 769–70 electronegativity 768 geometry 768
intermolecular forces/interactions 768, 927–8, 1051–3
non-degenerate 768–9
selection 587, 1103–5, 1128–34, 1137 perturbation theory (PT)
ab initio vibration SCF 177 anharmonic vibrational spectroscopy
168–9, 179–80 Brillouin–Wigner 465–79 CH· · ·O hydrogen bonds 840 concepts 765–70
coupled-cluster theory 119–22, 137–8 many-body perturbation 119–28, 133,
508–23, 1172–3, 1193–7 multi-reference 465–79, 508–23 non-equilibrium Green Functions 381–2 nonadditive forces 930–2
orbital interaction 767–70 polyatomic molecules 252–4 polymer chains 1022
Rayleigh–Schro¨dinger 510–11, 1052–3, 1061–2, 1192–3
size-consistent state-specificity 587, 599– 602, 617–18, 625–7
time-dependent 120–1 time-independent 120–1, 124 see also Møller–Plesset
PES see potential energy surfaces PFI-ZEKE see pulsed-field ionization
zero-electron-kinetic energy phase space 405–8
phenyl substituent effects 865–70 phenyl-1,5-hexadiene 861–2, 865–70 phenyl–carbonyl bonds 155 1-phenylcyclohexane-1,4-diyl diradicals 869