
Theory and Applications of Computational Chemistry / sdarticleindex
.pdfIndex
deMon codes 1079–92 denitrogenation 273–4 density
difference 298–9, 497 functional approximation 677–9 Laplacians 702–3
momentum 487–93
number density 484, 490–1, 495 reciprocity 495–6
shifts 847–50
density functional theory (DFT)
ab initio methods 507–8, 529–40 anharmonic vibrational spectroscopy 182 B3LYP 530–40, 1085, 1087
carbon nanostructure self-assembly 879–82 conceptual 1085, 1146
constrained-search 1082
conventional correction schemes 529–32 Cope rearrangements 859–72
correction schemes 507–8, 529–40 deMon codes 1079–92
design strategies 680–2
designing functional molecular systems 966–7
exchange-correlation 669–717
Fenske–Hall molecular orbitals 1143–7, 1150–1, 1161–3
force fields 182 GAMESS 1168
intermolecular forces 1064–5 isomeric fullerenes 900 Jacob’s ladder 678
local-scaling transformation 671 long-range corrections 529, 532–40 molecular system simulations 95–103,
108–9
momentum density 501–2 motivation for 671–3
open-ended single-walled carbon nanotubes 880–2
orbital-dependent 531, 674, 678, 716 orbital-free 502, 671
photobiology 272
potential energy surfaces 197–8 pyridine–copper tetramer 61–3 quantal 671
quantum mechanics/molecular dynamics 434
spin-polarized 677–9, 1083, 1134
1277
symmetry-adapted perturbation 928, 952, 954–7, 1064–5
tight-binding 814, 875–9, 1088–9 water hexamers 997
see also Kohn–Sham DFT
density gradient expansions (DGE) 680–1, 686–8, 692–3, 695–9
second-order coefficient 686 density matrices
equations of motion 448 exchange-correlation holes 704–5 expansions 678, 704–5
Kohn–Sham 501, 677–8, 682 momentum 487–9
natural orbitals 727–30 non-equilibrium Green Functions 376–7 one-electron 494, 677
reduced 487–9, 670–2, 678, 716, 726–8, 736
density of states (DOS) 397–409, 460, 820–9, 1016
derivatives see individual entries design equations 151
designing functional molecular systems 963–89
clusters 963–80 flippers 965, 987–9 ionophores 965, 980–3
nanomaterials 963–7, 983–7 nanotubes 963–7, 983–7 receptors 965, 980–3 sensors 965, 980–3
desolvation 41
deterministic canonical ensembles 429 deterministic functions 29–32
Dewar–Chatt–Duncanson (DCD) model 326, 333
DFT see density functional theory DGAUSS 1085, 1086
DGE see density gradient expansions DHF see Dirac–Hartree–Fock diabatic curves 639, 643–5, 649 diabatic states 1068
diagrams Brandow 123
connected 121–2, 473–5 disconnected 121–2, 473–5
exclusion-principle-violating 130, 366, 582, 587, 603, 927, 949
1278
Feynman-like 121, 124, 433–4
Goldstone 122–7, 1054, 1058 Hugenholtz 122–3
ladder 124–5
linked 121–2, 1066, 1193–8, 1213 resulting 123, 127
ring 124–5
unlinked 121–2, 1066, 1193–8 vacuum 121–2
valence bonds 223–4, 635–65 diastatine 552
diatomic molecules
active space selection 741–2 bonding 296–302
energy decomposition 296–302 first-row 118
many-body forces 924–5 time-dependent molecular theory 17
diazomethyl radical 273 dibromoethane 809 dicarbon 1129–32
dielectric constants 50–1, 53–5, 58–9 dielectric environments 47, 978
Diels–Alder allowed reactions 229, 240–1, 646–7
different orbitals for different spin (DOD) 731 diffuse functions 791–2, 795, 814
diffusion Monte Carlo (DMC) simulations 172–3, 262–3, 948, 953–4
Diffusion Quantum Monte Carlo (DQMC) algorithms 175–6
difluormethane 841–5 difluoromethylene singlet-triplet splitting
513–14 dihalogen bonding 303–5
dihydrogen bonding 296, 297–302, 357–60 dimension formula 118
Paldus–Weyl 118 dimers
CH· · ·O hydrogen bonds 846–7 four-component relativistic molecular
theory 547 intermolecular forces 1065–6
long-range corrections 534, 536–40 many-body forces 925, 928–30 metal nanoparticles 58–9
dimethyl oxalate 832
dinitrogen 83, 293–303, 305–6, 308–9, 458–60
Index
diphenyl substituent effects 865–70 dipnicogen bonding 297, 302–5 dipole moments 930
anharmonic infrared intensities 178 cesium xenon systems 1113–14 coupled-cluster functionals 1205–6 intermolecular forces 1048 lithium-hydrogen molecules 628–9
dipoles 971–2, 987
CH· · ·O hydrogen bonds 846–7 discrete approximations 47, 50, 60 electrodynamics 51–2, 59–61 many-body forces 923–4, 947–9, 953 molecular system simulations 95–6 polymer chains 1015, 1027
resonance 51–2 triple terms 923–4
Dirac equations 541 Dirac transformations 486
Dirac–Coulomb (DC) Hamiltonian 541–2 Dirac–Coulomb–Breit (DCB) Hamiltonian
541–2
Dirac–Hartree–Fock (DHF) method 542–3 Dirac–Kohn–Sham (DKS) method 542–3 diradicals 860–72
direct configuration interaction 739 direct dynamic simulations 415–19 direct inversions 203, 207–9 direct nonadiabatic dynamics 9–39 direct reaction dynamics 559, 575
Direct Simulation Monte Carlo (DSMC) method 436
disconnected diagrams 121–2, 473–5 discrete dipole approximations (DDA)
47, 50, 60 dispersion
coefficients 1051
energy 921–47, 1054–69, 1182 interactions 820, 921, 930, 976–81, 1003,
1056
intermolecular forces 1047–72 many-body forces 920–4, 931–2 non-additive interaction energy 938–9 second-order Møller–Plesset energy
1069–72
Dissipative Particle Dynamics (DPD) 436–7 dissipative structures 887
dissociation constants 8327
Index
energies 193, 467, 552, 808–9 enthalpy 861
hydrogen bonds 612–13, 619–27 intermolecular forces 1065–6 unimolecular reaction rates 403–5, 517–18
distributed data interface (DDI) 1177–9 distributed multipole analysis (DMA) 1181 2,11-dithio[4,4]metametahydroquinocyclo-
phane (MHQC) 988 2,11-dithio[4,4]metametaquinocyclophane
(MQC) 988 4,4’-dithioldiphenylacetylene 817–19 2,7-dithiolpyrene 817–19
dividing surfaces 68–72, 75–6, 80–3 diyl complexes 332–42, 358
DK see Douglas–Kroll
DKS see Dirac–Kohn–Sham
DMA see distributed multipole analysis DMC see diffusion Monte Carlo DMOL 1086
DNA 102–7, 269, 477, 574, 658
DOD see different orbitals for different spin donor-acceptors 311–14, 979
doping processes 1020–5 double donor 937, 969 double precision 5
double-well potentials 1023–5 double-zeta methods 1012 doublet stability 130
doublets, state 345–7, 645, 757–9, 1100–3, 1131–5
Douglas–Kroll (DK) method 549–53 Douglas–Kroll–Hess Hamiltonians 747–8 DPD see Dissipative Particle Dynamics DQMC see Diffusion Quantum Monte Carlo drug delivery 865, 984, 989
drug design 574
drug discovery 41, 44–5
DSMC see Direct Simulation Monte Carlo dyes 1021
dynamic correlation 117–18, 725, 736–8, 744–6, 863–5
dynamic depolarization 51
dynamic electron correlation 643, 736–8, 755, 863–5, 871, 971
dynamic polarizability 755, 939, 1101, 1207, 1212
dynamic reaction paths 237–8 dynamic rendering 37–8
1279
dynamical, time-dependent molecular theory 9–39
dynamical variables 32, 34
Dyson equations 373–82, 388–9, 393–4, 500–1
Dyson orbitals 493–500 DZP basis sets 625
E-CCM see extended coupled-cluster method EA see electron affinity
EBK see Einstein–Brillouim–Keller EDA see energy decomposition analysis effective core potentials 61, 563, 569, 901,
1088–9
effective elastic band theory 225–6 effective fragment potential 1177, 1181–4
effective Hamiltonians 583, 584, 746, 766–72 effective radius 51–2, 57
EFISH see Electric Field Induced Second Harmonic Generation
EGCI see Exponentially Generated CI eigenmode-following algorithm 996 Einstein–Brillouim–Keller (EBK)
quantization 408 elastic band theory 224–6
Electric Field Induced Second Harmonic
Generation (EFISH) 1026 electric fields 1026–7, 1207
CH· · ·O hydrogen bond 838, 846–7 lasers 150–1
local 55–9
size-consistent state-specificity 627–8 electrochemical switching 986 electrocyclic reactions 292, 646–7, 652 electrodynamics 47–64 electromagnetic fields 47–64
electron affinity (EA) coupled-clusters 1211
equations of motion 443–61, 1211
G2 and G3 theories 793–4, 797, 801–2, 805–7
valence bond diagrams 648–9 electron cloud perturbations 840
electron correlation 5, 118, 124, 730, 736–8, 1134
dynamic 643, 736–8, 755, 863–5, 871, 971 effects 118, 500, 565, 755, 935–6, 996–7 energy 599, 792
intramolecular 927–32, 1058
1280
intramonomer 928, 932–3, 1059–61 many electron 118, 124 nondynamic 273, 508, 736–8
static 273, 508, 736–8
electron deficient p-system clusters 979 electron delocalization 664, 774, 781, 1027,
1029
electron density 842–3, 847–50 electron gas 120, 124–8 electron lattice models 135 electron lone pair 335
electron momentum density 487–502 spectroscopy 493, 1107
electron nuclear dynamics (END) 32–7 electron operators 378–84, 389–92 electron paramagnetic resonance (EPR) 753 electron repulsion integrals 544–5 electron-localized states 774, 781 electron-spin resonance (ESR) 1099–100,
1102, 1133–6 electronegativity 768, 831–9, 849 electronic band structure 774–9
non-spin-polarized 774–5 spin-polarized 774–5, 777–9
electronic degrees of freedom 14–17, 37–8, 196–7
electronic delocalization 658–9 electronic energy 11–12, 565–6
electronic excitation 509, 575–6, 1099–100 electronic Hamiltonian mapping 775–7 electronic polarizability 573, 1028–9, 1031 electronic properties 842–3, 1026–33 electronic reorganization 645
electronic Schro¨dinger equation 15–17 electronic self energy 391–2
electronic spectroscopy 740–3, 748, 751–6, 833
electronic state energy 756–7 electronic state potentials 748, 756–60
electronically excited states 559, 571, 575–6, 1040
electrons
aqueous clusters 972–3 conduction electrons 48–53, 937 electron-electron repulsion 772–81 mean free paths 51–3
multiconfigurational quantum chemistry 725, 730, 736–8
Index
transfer 373–95, 1033–41 transport 373–95, 1033–41 tunneling 373–95
electrophiles 647–50, 979 electrostatic interactions
attraction 291, 293–4, 1048
bonding 329, 336, 340, 350, 363, 824 CH· · ·O hydrogen bonds 840, 843–4 effects 281, 834, 846
energy 653–5, 930, 976–8, 1054 energy decomposition 291–367 forces 298, 356, 920 intermolecular forces 1053–4 many-body forces 920, 931
embedded clusters 78 empirical
correction factors 792 fits 681, 706–8
potentials 176, 188–9, 434, 921, 926–31, 945–6
EN see Epstein–Nesbet
END see electron nuclear dynamics endohedrals 901–7, 983–7 energetics
carbon clusters 893–6 many-body forces 919–58 neutral water clusters 968–9 polymer chains 1013–42
water hexamers 996–7, 1000–5 energy
bands 1013–42, 1079 barriers 1037–9 derivatives 1175–6 diastatine 552 difference plots 619–27
energy decomposition analysis (EDA) 291–367
main-group compound bonding 291, 294–326
transition metal bonding 291, 294–5, 326–66
fluctuations 995, 1001, 1005 G2 and G3 theories 785–810 gaps 643–6, 648–9, 1013–42 Gaussian wave packets 28–9 landscapes 996
partitioning 291, 295 quantum virial theorem 292–3 storage 283–5
Index
three-body interactions 922–38, 944–5, 948–51
enhancement factors 61–3, 698–9 ensemble, canonical 70, 397–429, 954, 999 ensemble-averaged VTST 82–3
enthalpy
of activation 477–8, 864–7, 871 aqueous clusters 968–9
bond dissociation 861
endohedral metallofullerenes 903–6 entropy interplay 891–2, 898
of formation 788–9, 793–4, 797, 802, 805–9
entropy 891–2, 896, 898, 968–9 enzyme catalytic mechanisms 982–3 EOM see equations of motion
EOM-CC see equations of motion coupled clusters
EPR see electron paramagnetic resonance Epstein–Nesbet (EN)
partition 582, 600–2, 612, 615, 625–7 perturbation 1195
EPV see exclusion-principle-violation equations of motion coupled clusters
(EOM-CC) 455–7, 518–20, 1109, 1127
ab initio quantum chemistry 1191–2, 1202, 1207–13
acetylene 1132–3 GAMESS 1174
SAC–CI method 1101 theory 134
equations of motion (EOM) electron affinity 443–61 ionization potentials 443–61 metastable anion states 457–60
Møller–Plesser approximations 450–3 non-equilibrium Green Functions 379–82
equilibrium
constants 41, 895–6 equilibrium-solvation paths (ESP) 80 geometry 752–6, 789–90, 798–9,
1099–100, 1128–33 internuclear distances 1130–1
equilibrium properties 433 error analysis 1001–2
ES see Euler stabilization
ESCA see X-ray induced photoelectron spectroscopy
1281
ESHG see Electric Field Induced Second Harmonic Generation
ESP see equilibrium-solvation paths ESR see electron-spin resonance ethane 305
ethyl radical dissociation 403–5 ethylene 309, 347–54, 536–8
1-thiol-4-ethynylphenyl-4’-ethynylphenyl-1’- benzenethiolate 817–19
2’-amino-4-ethynylphenyl-4’-ethynylphenyl- 5’-nitro-1’-benzenethiolate 818, 819
Euler angles 26
Euler integration 232–4 Euler stabilization (ES) 233–4 Euler–Lagrange equations 32
evolving width Gaussian wave packets 25–9 Ewald summation 428
Ex-EGCI see Excited Exponentially Generated CI
Ex-MEG see Excited Mixed Exponentially Generated
exact exchange functionals 530–1, 637, 669–717, 1145–9
exchange
energy 682–4, 686–7
exact exchange 530–1, 637, 669–717, 1145–9
functionals
approximate 681, 708–14 DFT 529–40, 669–717 energy decomposition 296
Fenske–Hall molecular orbitals 1148–9 long-range corrections 529–40
holes 672, 681, 692–4, 699–705 hydrogenic atoms 700
LDA 694, 705, 713 PBE 699–701
Taylor expansion 699–705 TPSS 699–701
interactions 920, 932 non-additivity 921–32
potentials 501, 669, 689–91, 698, 713, 1079 repulsion 291–367, 534, 565–7, 773, 840,
843, 844
three-body interactions 922–38 two-body interactions 922–36
exchange-correlation analytic properties 679–80
approximate exchange 681, 708–14
1282
constraint satisfaction 681, 688–99 conventional 534, 674, 690 density-gradient expansions 680–1, 686–8,
692–3
development progress 669–717 empirical fits 681, 706–8 energy 675–7, 1082
exact exchange 681, 708–14 functionals 669–717
generalized gradient approximation 706, 708–16
Hartree–Fock 707–8, 714, 715 Hohenberg–Kohn principle 670, 673, 677 holes 672, 681, 692–4, 699–705
normalization 692–4 spherically averaged 700
hybrid exchange 681, 708–14 implementation 714–16
kinetic energy density 677–9, 683–4, 696–7
Kohn–Sham DFT 669–717
LDA 680, 682–6, 697–8 LSDA 678–9, 683, 685, 715–16 many-body forces 920, 932 meta GGA 678, 681, 708–16
mixing exchange functionals 681, 708–14 performance 714–16
potentials 553, 674, 677, 714–17, 1064–5, 1081, 1086–9
asymptotic behavior 688–93, 700–3 Van Leeuwen-Baerends model 690
spin-polarizations 678–9, 683–5 excitation
dipolar 51 energy
allyl radicals 752–6 formaldehyde 518–21 long-range corrections 534–8
multiconfigurational quantum chemistry 742
operators 584
spectra 1101, 1106–12, 1115–19 Excited Exponentially Generated CI
(Ex-EGCI) 1105
Excited Mixed Exponentially Generated (Ex-MEG) 1105
excited states
coupled-clusters 1192–202, 1207–13
Index
equilibrium geometries 1099–100, 1102, 1128–33
free-base phthalocyanine 1101, 1122–3 GAMESS 1173–5
multi-electron processes 1130–1
SAC–CI method 1099–102, 1105–12, 1115–19, 1122–3, 1128–33 exclusion-principle-violation (EPV) 130, 366,
582–7, 603–5, 927, 949 exit-channel dynamics 417–19 exohedral fullerenes 983–7
exponential ansatz 472, 1063, 1209, 1213 exponential cluster expansion 124–8 Exponentially Generated CI (EGCI) 1105 Extended Brillouin’s (BLB) theorem 738–9 extended coupled-cluster method (E-CCM)
135
extended CPMET 131
extended Douglas–Kroll transformations 550–3
extended Hu¨ckel tight binding 766 extended Koopmans’ theorem 454, 461 extended molecules 814–16
external orbitals 513
externally corrected coupled-cluster methods 468–9
extinction spectra 47–54
fast multipole method 546, 728 FC see Franck–Condon
FCI see full configuration interaction FDTD see finite difference time domains FEM see floating encapsulate model Fenske–Hall molecular orbitals 1143–63 Fermi contact hyperfine splitting constants
1099–100, 1133–6 Fermi energy 49, 59, 976, 986 Fermi operators 394–5
Fermi superoperators 378 Fermi vacuum 468 ferrocene 360–6, 1143–6
ferromagnetic spin exchange 776–7 FETs 820
Feynman diagrams 121, 124 Feynman path integrals 433–4 FHF species 653–4
field operators 22, 25, 30–1 field-effect transistors (FETs) 820
Index
fine-grained parallelism 1179
finite difference time domains (FDTD) 47, 50, 61
finite dimension standard valence bond theory 117
finite histograms 995 finite size effects 53 finite temperature
properties 995–1006 string method 431
first-order electrical properties 627–9 first-order reaction path following 232–4 first-order reduced density matrices 487–9,
502, 726, 727 first-principles calculation 165–90 first-principles simulations 923–6 first-row diatomic molecules 118 Fischer-type complexes 342–7 fitting functions 937 five-membered rings 1106–8 flexible molecules 429 flexible-monomer potentials 923 flippers 965, 987–9
floating encapsulate model (FEM) 906 fluid dynamics 78–83, 105–8, 426–8, 436 fluorescence 47, 49, 269–70, 274, 276–9 fluorine
energy decomposition 303–7, 354–7 hydrogen exchange 526–9
lead monofluoride 748, 756–60 molecular system simulations 95
multireference coupled-clusters 467, 472–3 unimolecular reaction rates 417–19
FMO see fragment molecular orbital FO see fragment orbitals
Fock evaluations 241 Fock matrices 565, 1016
Fock operators 586, 601–2, 615, 745 Fock orbitals 511
Fock space 469
forbidden reactions 517, 637, 641, 646–7, 652, 735
force fields 180–3, 223, 709, 877–8, 920–1 forces
coupled-clusters 1202–7
induction 920–2, 931–2, 938–42, 1053–4 intermolecular 919–58, 1047–72
see also many-body forces foreign state intermediates 656–8
1283
form factors 483–4, 488–9, 493–5 formaldehyde
CH· · ·O hydrogen bonds 833–4, 840–1, 844–5
inner-shell satellite spectra 1126–7 unimolecular reactions 412, 517–18 valence excitation energies 518–21
formic acid dimers 846–7 formyl radicals 401, 402
FORS see fully optimized reaction space FORTRAN 2, 3
four-body effects 947–8, 957 four-component relativistic molecular theory
542–7
Fourier transforms 488–9, 494 Fourier–Hankel method 493
fragment molecular orbital (FMO) 1180–1 fragment orbitals (FO) 650–2
Franck–Condon (FC) factor 1090 Franck–Condon (FC) points 270–2 free energy
of activation 80 aqueous clusters 968–9 barriers 1038–9
of complexation 41–5 non-covalent binding affinity 41–5
free-base phthalocyanine 1101, 1122–3 free-base tetrazaporphin 1122–3 freezing-point diagrams 833
frequency shifting 831, 837–9, 843–50, 969–71
frequency-dependent polarizability 60–3, 1051, 1057–61, 1182–4
frontier orbitals 292, 311, 329, 641, 1151–3, 1156
FSGO valence bands 1017
full configuration interaction (FCI) 611, 614–15, 727, 1168–72, 1174
fullerenes 875–87, 897 endohedral 983–7 energetics 893–6 formation 877–9 giant 875, 883–7
isomer relative stability 892–3, 896 metallofullerenes 891–2, 901–7 self-assembly 875–87 thermodynamics 893–6
fully optimized reaction space (FORS) 739, 1168–9
1284
functional molecular system design 963–89 furan 808–9, 1106–8
G2 theory 785–94, 808
G3 theory 785–9, 794–810 G3S theory 803–7
G3X theory 799–803
gallium bonding 314–22, 332–42
GAMESS see General Atomic and Molecular Electronic Structure System
gas-phase 68–77, 492–3, 897–8 gauge invariance 716
gauge-including atomic orbitals (GIAO) 570 Gaussian
exchange-correlation 671, 685–6 functions 754, 1083
G2 and G3 theories 785–810 GAUSSIAN package 4, 659, 671, 685–6 Gaussian type orbitals (GTO) 1058–9,
1080, 1081
Gaussian80 ab initio package 834 local density approximations 685–6 program package 834, 1101 spinors 543–4
valence bond diagrams 659 wave packets 21–9
GDIIS 203, 207–9
GEA see gradient expansion approximation Gellman-law expressions 377–8
General Atomic and Molecular Electronic
Structure System (GAMESS) electronic structure 1167–85 pyridine–copper tetramer 61–3 quantum mechanics 1167–77
quantum mechanics/molecular mechanics 1181–4
scalable electronic structure theory 1168, 1177–81
general model space (GMC) 138–9, 630 general-multiconfiguration space SCF
(GMC-SCF) 516–23
general-R method 920–1, 929–30, 942, 1128–33
generalized ensembles 428
generalized Fock operator 586, 602, 615, 745
generalized gradient approximation (GGA) asymptotic corrections 691
correlation wave functions 702–3
Index
DFT 529
DFT deMon codes 1084, 1085, 1087 empirical fits 706
exchange-correlation 681, 691, 694, 702–3, 706, 708–16
formation energies 1085 Kohn–Sham DFT 678 long-range corrections 533 meta 678, 681, 708–16
mixing exchange functionals 681, 708–14
systematic constraint satisfaction 696–7 generalized Langevin equation 81 germanium bonding 310, 314–22, 342–7 GF see Greens function
GFP see green fluorescent proteins
GGA see generalized gradient approximation giant fullerenes 883–7
GIAO see gauge-including atomic orbitals Gibbs energy/free energy 893, 895, 903 global hybrid exchange functionals 708–11,
713
glycine energy conformers 181–2 glycine-water complexes 184–5 GMC see general model space
GMC-SCF see general-multiconfiguration space SCF
gold 47–64, 347–54, 547, 814–19, 974–6 Goldberg polyhedra 897
Goldstone diagrams 121–7, 1054–6, 1058 gradient expansion approximation (GEA)
680–1, 686–8, 692–3, 1084, 1087 gradients
analytical gradients 1202–7 conjugate density matrices 572 coupled-cluster theory 132–40 potential energy surfaces 198–200 reduced gradient 681, 708–14
graphical control/analysis 6 graphical representations 104–5
Graphical Unitary Group Approach (GUGA) 739
graphite interaction 823–7
green fluorescent proteins (GFP) 269–70, 274, 276–9
Greens function (GF) 373–95, 453–4 grid generating functions 1089
grid methods 175
Grote–Hynes theory 81–2
Index
ground state
allyl radicals 752–3 G3S theory 803 hydrogen fluoride 95–6
lead monofluoride 748, 756–60 momentum 494–5 photobiology 270–2
pyridine–copper tetramer 60–3
group sum selected operators (GSUM) 1103, 1105
group-13 diyl complexes 332–42 group-14 nonpolar bonding 310 growing string approach 227
GSUM see group sum selected operators GTO see Gaussian type orbitals
GUGA see Graphical Unitary Group Approach
H4 model 612–15 hafnium bonding 326–32
half sandwich complexes 320–1 half-and-half hybrids 709, 1085, 1087 halogens 794
Hamiltonian encoding technique 160 Hamiltonians
ab initio vibration SCF 177 condensed phase reactions 79 effective 583, 584, 746, 766–72 Heisenberg 775–7
Hubbard 129
minimal electron nuclear dynamics 33 models 129, 411
multireference coupled-clusters 471–2 non-equilibrium current-carrying states
382–4
non-Hermitian 136, 457, 746, 1209 non-relativistic 783
Pariser–Parr–Pople 129, 560 photonic reagent control 151–2, 157 polyatomic molecules 252–6, 260–5 relativistic 548–9, 783 semiempirical 120
size-consistent state-specificity 583, 592, 601–2
spin 135, 775–7 spin-free 123
time-dependent molecular theory 12–17 transformed 591
two-component relativistic theory 548, 550–3
1285
unimolecular reaction rates 405 Watson 171, 252
zeroth-order 601–2, 745–6 Hamilton’s equations 29 hard sphere interactions 427 hardware development 105–8 harmonic
approximations 74, 252–4 frequency 552
oscillators 22–9, 165–6, 252–3, 893, 1026, 1031
Hartree–Fock (HF) argon-hydrogen fluoride trimers
946–7
average potential 106
coupled-cluster theory 106–7, 117–18, 129–30
eigenvalue functions 1080 electron nuclear dynamics 36
energy 104, 707–8, 931, 946–7, 1000 exchange-correlation 707–8, 714, 715 G2 theory 789
GAMESS 1168, 1172, 1180–1 generalized 101, 120 interaction energy 931, 946–7 many-body forces 931, 946–7
molecular system simulations 95–104, 109–11
momentum 496–7 multiconfigurational quantum chemistry
726, 730–1 orbitals 1206
polymer chains 1012–13 restricted 109–11, 789, 864–5
semiempirical quantum-chemistry 563 stability 129–30
unrestricted 109–11, 732–3, 789 water hexamers 1000
wave functions 730–1
Hartree–Fock–Roothan (HFR) calculations 1144–7, 1149–51, 1154–5
Hartree–Fock–Slater (HFS) approximation 1080
heat
capacity 995, 1000, 1003–6
of formation 793–4, 861, 894–5 of reaction 477–8
of vaporization 895 Heck reaction 646
1286
Heisenberg
Green Functions 378–82, 385–7 Hamiltonians 775–7
Heitler–London (HL) functions 90–2,
109–11, 116–17, 644, 652–3, 731–2 helices 851
helium 1051, 1062, 1068–9 superfluid 946
trimers 932–7, 942–3 helium-hydrogen fluoride 1062
Hellman–Feynman theorem 199–200, 675, 1202–3, 1205
Hermite–Gaussian auxiliary functions 1089 Hessians
anharmonic vibrational spectroscopy 166 coupled-cluster theory 132–40 GAMESS 1178
minimization 215–17 momentum 498–9
potential energy surfaces 198–200, 215–17, 219–20, 230, 240
reaction paths 240
transition states 219–20, 230 heterofullerenes 907
heteroleptic diyl complexes 332–42 hexacarbonyl bonding 327–9 1,5-hexadiene 859–61, 867–8 hexafluorides 322–6
HF see Hartree–Fock
HFR see Hartree–Fock–Roothan HFS see Hartree–Fock–Slater high-density scaling 695–6 high-level programming languages 2
high-resolution rotational spectroscopy 947 high-spin (HS) states 777, 948–9 high-temperature
carbon chemistry 876
quantum chemical molecular dynamics 875–87
small fragment chemistry 877
higher level corrections (HLC) 787, 791–2, 795–804
higher-order integrators 236–7
highest occupied molecular orbitals (HOMO) 977, 1150, 1154–63, 1172–3
Hilbert space 375–82, 385–9, 469–70, 583 Hinshelwood–Lindemann model 400
HIV protease 44–5
HL see Heitler–London
Index
HLC see higher level corrections Hohenberg–Kohn principle 670, 673, 677,
1081
holes
Coulomb holes 99, 736
exchange 672, 681, 692–4, 699–705, 713 holonomic constraints 429, 430
HOMO see highest occupied molecular orbitals
homoleptic diyl complexes 332–42 hopping integral 776–7
host–guest complexes 41 hot spots 56
HS see high-spin Hubbard Hamiltonian 129 Hubbard–Lieb model 135
Hu¨ckel-type semiempirical quantumchemistry 560
Hudson Valley 105–8 Hugenholtz diagrams 122–3
hybrid functionals 530–2, 708–14, 715–17 Coulomb-attenuated 714
global 711–13, 717 half-and-half 709, 1085, 1087 local 681, 712
screened 533, 713
hybrid methods 226–7, 572–3 hybridization 540, 834–9, 883, 974–6 hydration 973
hydrides 357–60, 401–2, 1068–9 hydrocarbons 794
hydrocarboxyl radicals 187–8 hydrodynamic flows 436 hydrogen
abstraction 645–6
atoms 77–8, 485–6, 494–5, 954 bonded clusters 171, 182–5 bonded complexes 185, 698–9
bonding 78, 567–9, 937–8, 966–80, 984, 998
bulk water 969
energy decomposition 296–302, 305–14, 342–7, 354–60
exchange 526–9, 660–1 ground-state momentum 494–5 hydrogen-carbon bond lengths 406–7 hydrogen-chloride 947–8 hydrogen-fluoride 95–6 hydrogen-peroxide 342–7