Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книги Зеленцова / Спецгл. ч.1 / Основы технологии производства.Ч1.doc
Скачиваний:
486
Добавлен:
11.03.2016
Размер:
1.47 Mб
Скачать

Теплофизические свойства конструкционных материалов в зоне сварки

Материал

кал/(смсград)

с

кал/(гград)

с

кал/(см3град)

а

см/с

Чугуны специальные

(с=3,5…4,2%)

0,065

0,11

1,05

0,06

Стали хромистые

30ХМ, 40Х и т.п.

0,06

0,12

1,2

0,07

Стали хромистые

18ХНВ, 20Х13 и т.п.

0,04

0,10

1,1

0,05

Алюминиево-магниевые, алюминиево-кремнистые сплавы

0,44…0,45

0,22…0,24

0,60…0,62

0,9…1,05

Медь и медные сплавы

0,85…0,90

0,09

0,92…0,95

0,93…0,96

Для определения боковых границ зоны нагрева и границ поперечного сечения сварочной ванны можно воспользоваться уравнениями Лапласа и Фурье, а для оценки скорости разогрева и остывания использовать критерии Фурье и Био.

Принимая направление вектора скорости Vсв в качестве координаты х для трехмерного температурного поля, для координаты у, перпендикулярной х, можно получить выражение для установившегося теплового режима, т.е. для времени =0:

, (3.61)

где ; ;  – законы изменения температур по осям x, y, z, где z – «глубина» размещения точки температуры в металле под сварочной ванной;

, (3.62)

где – коэффициент температуропроводности;  – плотность металла; 2 = ;  – набла-оператор;  – оператор Лапласа.

Таким образом, на основании выражений (3.61) и (3.62) закон изменения температуры с увеличением «глубины» металла по координате z можно считать близкими к экспоненциальному.

Критерий Фурье (Fo) и критерий Био (Bi) характеризуют скорость прогрева и остывания металла для каждой «точки нагрева»:

; (3.63)

, (3.64)

где  – коэффициент теплопроводности (кал/(смсК));  – коэффициент теп­лоотдачи (Вт/(мК)); l – поперечные размеры тела (метр).

Поэтому, чем больше значение коэффициента  и площадь поперечного сечения детали, тем быстрее осуществляется теплоотвод от зоны сварочной ванны и тем выше скорость остывания сварочного шва (Т/), что оказывает непосредственное влияние на качество и формы шва.

Использование флюсов и сред защитных газов при сварке замедляет скорость остывания шва, создавая более благоприятные условия для формирования оптимальной структуры его металла. Этой же цели могут служить различные способы подогрева шва после сварки и замедления темпов его охлаждения в термических емкостях, так называемых «копильниках», существенно замедляющих скорость охлаждения деталей, отремонтированных сваркой и наплавкой. При уменьшении диаметра электрода увеличивается потенциал ионизации в объеме сварочной дуги, что неблагоприятно сказывается на качестве шва (быстрое остывание, высокая твердость и хрупкость структуры наплавленного металла). Использование эффективных флюсов и защитных сред уменьшает потенциал ионизации и улучшает качество наплавленного металла так же, как и использование переменного тока.

Дефекты структуры шва, так же, как и дефекты отливок, могут быть описаны механизмами нарушения дислокаций. Для оценки дислокаций предложены методы Френкеля и Шоттки. По методу Френкеля механизм образования дислокаций описывается выражением (3.65). Эти дефекты характеризуют возникновения искажений кристаллической решетки материала в порах и «линиях сдвига» внутри структуры металла:

, (3.65)

где gF – свободная энергия образования дефекта по Гиббсу; Т – температура металла в зоне дефекта (К) для данного прямоугольного микроэлемента; k – постоянная Стефана-Больцмана; K – функция температуры и давления в зоне возникновения дефекта.

Следовательно, увеличение температурного градиента Т/, где  – время воздействия температуры Т на металл, способствует увеличению количества вакансий в металле шва.

Дефекты по теории Шоттки возникают при выходе атомов кристаллической решетки из глубинных слоев структуры на поверхность застывающего металла и характеризуются выражением

, (3.66)

где n – равновесное количество дефектов; N – количество узлов в кристаллической решетке для элементарного объема; Т – температура металла (К); k – постоянная Стефана-Больцмана; Е энергия активации образования дефекта (для вакансии или межузельных атомов); ' – частота колебания соседних атомов в кристаллической решетке; 0 – эйнштейновская частота колебаний, 1013 Гц.

Таким образом, при пластической деформации, механической обработке, действии повышенных температур, электросварке вакансии образуются по механизму Френкеля, а образование вакансий при старении материала детали соответствует механизму Шоттки. Для улучшения качества наплавленного металла и предотвращения увеличения величины gF в выражении (3.65) необходимо: обеспечить высокую чистоту и однородность сварочного (наплавочного) шва путем эффективного применения флюсов и постоянства состава электродной проволоки; соблюдать точное выдерживание постоянного режима сварки по току, напряжению, температурам; в случае выгорания легирующих добавок использовать электроды с повышенным содержанием углерода для компенсации легирующих элементов в шве.

Для уменьшения количества дефектов по выражению (3.66) необходимо при ремонте сваркой применять такие материалы для сварочных работ, которые не будут увеличивать анодные потенциалы в металле деталей двигателя, восстановленных при помощи сварки и наплавки. Следует также стремиться не превышать, без производственной необходимости, предельные температуры технологических процессов сварки и наплавки, использовать меры для уменьшения скорости охлаждения сварочных и наплавочных швов. Для компенсации выгорания легирующих элементов при сварке и наплавки используют выражение для Сэ, при этом повышенное содержание углерода в сварочном шве обеспечивается составом электродной проволоки.

Эквивалентное количество углерода Сэ для компенсации выгорания легирующих добавок в стали учитывают пересчетом их содержания по выражению

. (3.67)

Указанные в данном выражении химические элементы могут быть вос­полнены также введением их в увеличенном количестве либо в состав электродной проволоки, либо в состав присадочных прутков при сварке неплавящимся электродом, например, при использовании постоянного сварочного тока прямой или обратной полярности.

Возникновение газовых пор в шве обычно связано с выделением азота, водорода или окиси углерода с металлом в момент его затвердевания. Азот и водород в зону сварки попадают из атмосферы, а окись углерода при сварке сталей и чугунов выделяется из металлов. От формы шва и размеров сварочной ванны (ширина/глубина) зависит легкость очистки шва от газов, следовательно, режимы сварки активно влияют на пористость шва (см. табл. 3.17). Для предотвращения попадания водорода в зону шва в состав сварочных флюсов вводят плавиковый шпат (CaF2) и кремнезём (SiO2) одновременно.

Таблица 3.17