
- •1) Цитология - ее цели и задачи. Этапы развития цитологии.
- •2) Развитие современной цитологии. Выявление ультрамикроскопических особенностей, присущих специализированным клеткам.
- •3) Современные положения клеточной теории.
- •4) Методы цитологических исследований. Световая микроскопия - основной метод наблюдения клеток.
- •5) Дифференциальное центрифугирование - метод получения отдельных клеточных компонентов для цитохимического и биохимического анализа.
- •6) Клетки прокариот и эукариот. Особенности и различия в их строении.
- •7) Цитоплазматическая мембрана. Современные представления о строении мембран.
- •8) Надмембранные структуры эукариотических клеток.
- •9) Микрофибриллярная система или система микрофиламентов (актин-миозин).
- •10) Тубулиновая система или система микротрубочек (тубулин-динеин)
- •11) Проявление единства субсистем поверхностного аппарата клетки в реализации основных функций: барьерной, транспортной, рецепторной и контактной.
- •12) Мембранный транспорт макромолекул и частиц; экзоцитоз и эндоцитоз.
- •13) Контактная функция плазматической мембраны. Межклеточные контакты.
- •14) Адгезионные (механические): поясковые десмосомы, точечные десмосомы, полудесмосомы.
- •15) Замыкающие контакты: плотный, промежуточный.
- •16) Проводящие контакты: щелевой контакт, химические синапсы и плазмодесмы.
- •17) Особенности развития и строения прокариотических клеток. Основные гипотезы происхождения прокариотной клетки и ее компартментов.
- •18) Цитоплазма. Общий химический состав цитоплазмы. Организация цитозоля.
- •19) Включения в цитозоле растительных клеток, их локализация и функциональное значение.
- •20) Включения в цитозоле животных клеток, их локализация и функциональное значение.
- •21) Морфология, локализация и структура митохондрий.
- •22) Локализация в мембранах митохондрий основных звеньев окислительного фосфорилирования.
- •23) Митохондрия как полуавтономный органоид.
- •24) Хлоропласты - энергообразующие органоиды растительных клеток.
- •25) Эпр. Строение и химический состав.
- •26) Комплекс Гольджи. Общая характеристика, локализация в клетке, ультраструктура.
- •27) Лизосомы. Структура лизосом и их химическая характеристика.
- •28) Пероксисомы (микротельца). Структура пероксисом. Их химическая характеристика. Функциональное значение пероксисом.
- •29) Структурная и функциональная взаимосвязь всех компартментов вакуолярной системы.
- •30) Роль ядра в жизни клетки и его значение в переносе информацииот днк к белку.
- •31) Основные элементы структуры интерфазного ядра: совокупность интерфазных хромосом (хроматин или днп интерфазного ядра), поверхностный аппарат ядра, ядерный сок (кариоплазма) и ядрышко.
- •32) Разновидности хроматина: деспирализованный эухроматин, конденсированный гетерохроматин и факультативный гетерохроматин. Функциональное значение типов хроматина.
- •33) Функция гистонов, как регуляторов транскрипции и укладки молекул днк. Структурная организация хроматина.
- •34) Основные компаненты поверхностного ядерного аппарата клетки: ядерная оболочка, периферическая плотная пластинка (ламина) и поровые комплексы.
- •35) Кариоплазма. Химический состав.
- •36) Ядрышко - органоид клеточных рибосом. Химия ядрышка, рнк ядрышка.
- •37) Структурно-биохимическая организация рибосом, их роль в синтезе белка.
- •1 Этап. Инициация.
- •2 Этап. Элонгация (удлинение цепи).
- •3 Этап. Детерминация (окончание).
- •38) Гипотезы происхождения эукариотической клетки и основных компартментов эукариотических клеток.
- •39) Жизненный цикл клетки: пресинтетическая, синтетическая, постсинтетическая стадии, митоз.
- •40) Деление прокариотических клеток. Особенности репродукции прокариот.
- •41) Общая организация митоза эукариотических клеток.
- •42) Мейоз, стадии мейоза. Конъюгация хромосом, кроссинговер, редукция числа хромосом.
- •43) Особенности профазы I мейоза.
- •44) Основные различия между митозом (непрямым делением) и мейозом (редукционным делением)
- •45) Котрансляционный транспорт растворимых белков на мембранах гранулярного эпр.
- •46) Клеточный центр: центриоли и диплосома.
- •47) Центросомный цикл в животной клетке.
- •48) Различные типы митоза эукариот.
- •49) Динамика митоза и цитокинеза.
8) Надмембранные структуры эукариотических клеток.
У животных .Гликокаликс. Эукариотические клетки животных не образуют клеточных стенок, но на поверхности их плазматической мембраны есть сложный мембранный комплекс – гликокаликс, который выполняет в клетке важные функции. Он образован системой периферических белков мембраны, углеводными цепями мембранных гликопротеинов и гликолипидов, а также надмембранными участками интегральных белков, погруженных в мембрану.
Гликокаликс выполняет ряд важных функций: он участвует в рецепции молекул, содержит молекулы межклеточной адгезии, отрицательно заряженные молекулы гликокаликса создают электрический заряд на поверхности клеток. Определенный набор молекул на поверхности клеток является своеобразным маркером клеток, определяя их индивидуальность и узнаваемость сигнальными молекулами организма. Это свойство имеет очень большое значение в работе таких систем как: нервная, эндокринная, иммунная. В ряде специализированных клеток (например: во всасывающих клетках кишечного эпителия) гликокаликс несет основную функциональную нагрузку в процессах мембранного пищеварения. К сложным надмембранным образованиям животных клеток относятся разного вида кутикулы, характерные для многих групп беспозвоночных животных (членистоногих, червей, моллюсков, асцидий). Структура кутикул разного вида будет рассмотрена в соответствующих главах, посвященных покровным эпителиям позвоночных и беспозвоночных животных.
Таким образом мы видим, что плазматическая мембрана является важнейшим компонентом про- и эукариотических клеток. Она во многом определяет жизнеспособность клетки и обеспечивает условия для успешного выполнения клеткой ее функций.
У растений.Основным компонентом клеточной стенки растительных клеток является сложный углевод – целлюлоза. Длинные молекулы целлюлозы, соединяясь друг с другом, образуют микрофибриллы толщиной 10-30 нм. Они, в свою очередь образуют витые как канат нити большего диаметра (0,5 мкм) и длинной до 5 мкм – макрофибриллы. Прочность их очень велика и сравнима с прочностью стальной проволоки. Слои макрофибрилл располагаются под углом друг к другу, создавая мощный многослойный каркас.
Кроме целлюлозы, в состав клеточной стенки входят другие полисахариды (гемицеллюлоза, пектин, лигнин). Они придают стенке дополнительную жесткость. Кроме полисахаридов, в состав клеточных стенок растений входят жироподобные вещества, предотвращающие излишнее испарение воды из клетки. Клеточные стенки соседних клеток плотно прилегают друг к другу, но между ними остается узкий промежуток – срединная пластинка, состоящая из пектинов, и выполняющая роль межклеточного вещества, по которому транспортируются вода, ионы, различные молекулы. После того, как клетка прекращает рост, изнутри начинает откладываться вторичная оболочка, имеющая большую прочность, чем первичная. Обычно она трехслойная. В клетках, имеющих вторичную оболочку, цитоплазма гибнет и они превращаются в опорные элементы или трубочки, проводящие воду.
Роль цитоплазматической мембраны в формировании клеточной стенки определяющая. Синтез целлюлозных фибрилл происходит с помощью ферментных комплексов, встроенных в мембрану и имеющих форму розеток. Характер распределения этих розеток по мембране при образовании первичной или вторичной оболочек (он разный) также определяет плазматическая мембрана и субмембранный комплекс.