
- •1) Цитология - ее цели и задачи. Этапы развития цитологии.
- •2) Развитие современной цитологии. Выявление ультрамикроскопических особенностей, присущих специализированным клеткам.
- •3) Современные положения клеточной теории.
- •4) Методы цитологических исследований. Световая микроскопия - основной метод наблюдения клеток.
- •5) Дифференциальное центрифугирование - метод получения отдельных клеточных компонентов для цитохимического и биохимического анализа.
- •6) Клетки прокариот и эукариот. Особенности и различия в их строении.
- •7) Цитоплазматическая мембрана. Современные представления о строении мембран.
- •8) Надмембранные структуры эукариотических клеток.
- •9) Микрофибриллярная система или система микрофиламентов (актин-миозин).
- •10) Тубулиновая система или система микротрубочек (тубулин-динеин)
- •11) Проявление единства субсистем поверхностного аппарата клетки в реализации основных функций: барьерной, транспортной, рецепторной и контактной.
- •12) Мембранный транспорт макромолекул и частиц; экзоцитоз и эндоцитоз.
- •13) Контактная функция плазматической мембраны. Межклеточные контакты.
- •14) Адгезионные (механические): поясковые десмосомы, точечные десмосомы, полудесмосомы.
- •15) Замыкающие контакты: плотный, промежуточный.
- •16) Проводящие контакты: щелевой контакт, химические синапсы и плазмодесмы.
- •17) Особенности развития и строения прокариотических клеток. Основные гипотезы происхождения прокариотной клетки и ее компартментов.
- •18) Цитоплазма. Общий химический состав цитоплазмы. Организация цитозоля.
- •19) Включения в цитозоле растительных клеток, их локализация и функциональное значение.
- •20) Включения в цитозоле животных клеток, их локализация и функциональное значение.
- •21) Морфология, локализация и структура митохондрий.
- •22) Локализация в мембранах митохондрий основных звеньев окислительного фосфорилирования.
- •23) Митохондрия как полуавтономный органоид.
- •24) Хлоропласты - энергообразующие органоиды растительных клеток.
- •25) Эпр. Строение и химический состав.
- •26) Комплекс Гольджи. Общая характеристика, локализация в клетке, ультраструктура.
- •27) Лизосомы. Структура лизосом и их химическая характеристика.
- •28) Пероксисомы (микротельца). Структура пероксисом. Их химическая характеристика. Функциональное значение пероксисом.
- •29) Структурная и функциональная взаимосвязь всех компартментов вакуолярной системы.
- •30) Роль ядра в жизни клетки и его значение в переносе информацииот днк к белку.
- •31) Основные элементы структуры интерфазного ядра: совокупность интерфазных хромосом (хроматин или днп интерфазного ядра), поверхностный аппарат ядра, ядерный сок (кариоплазма) и ядрышко.
- •32) Разновидности хроматина: деспирализованный эухроматин, конденсированный гетерохроматин и факультативный гетерохроматин. Функциональное значение типов хроматина.
- •33) Функция гистонов, как регуляторов транскрипции и укладки молекул днк. Структурная организация хроматина.
- •34) Основные компаненты поверхностного ядерного аппарата клетки: ядерная оболочка, периферическая плотная пластинка (ламина) и поровые комплексы.
- •35) Кариоплазма. Химический состав.
- •36) Ядрышко - органоид клеточных рибосом. Химия ядрышка, рнк ядрышка.
- •37) Структурно-биохимическая организация рибосом, их роль в синтезе белка.
- •1 Этап. Инициация.
- •2 Этап. Элонгация (удлинение цепи).
- •3 Этап. Детерминация (окончание).
- •38) Гипотезы происхождения эукариотической клетки и основных компартментов эукариотических клеток.
- •39) Жизненный цикл клетки: пресинтетическая, синтетическая, постсинтетическая стадии, митоз.
- •40) Деление прокариотических клеток. Особенности репродукции прокариот.
- •41) Общая организация митоза эукариотических клеток.
- •42) Мейоз, стадии мейоза. Конъюгация хромосом, кроссинговер, редукция числа хромосом.
- •43) Особенности профазы I мейоза.
- •44) Основные различия между митозом (непрямым делением) и мейозом (редукционным делением)
- •45) Котрансляционный транспорт растворимых белков на мембранах гранулярного эпр.
- •46) Клеточный центр: центриоли и диплосома.
- •47) Центросомный цикл в животной клетке.
- •48) Различные типы митоза эукариот.
- •49) Динамика митоза и цитокинеза.
18) Цитоплазма. Общий химический состав цитоплазмы. Организация цитозоля.
Цитоплазма эукариотических клеток имеет следующий состав: вода 80%, белок около 10%, ДНК 0,4%, РНК 0,7%, липиды 2%, органические соли 1% и неорганические соли 1%.
Цитоплазма – внутренний компонент клетки без ядра.
Цитоплазма делится на три части: органоиды (обязательные для любой клетки компаненты), включения (необязательные компаненты) и гиалоплазма (основная жидкая фаза клетки – цитозоль).
Гиалоплазма. Сложный состав. По консистенции приближается к гелю. Гели – структурированные коллоидные системы с жидкой дисперсной средой. Частицы дисперсной фазы соединены между собой в рыхлую пространственную структуру, что лишает систему текучести. Гель цитоплазмы относится к тиксотропным гелям, которые под воздействием внешних условий, которые могут менять свое агрегатное состояние и переходить в менее вязкую фазу, которая называется золь. При изменении состава микротрубочки разрушаются.
Гиалоплазма выполняет:
1) Синтез и отложение запасных полисахаридов, накопление липидов.
2) Место протекания гликолиза и синтеза АТФ.
3) Место синтеза белка. Активация аминокислот с помощью специфических ферментов и связывания их с транспортными РНК.
4) В гиалоплазме происходит модификация ферментов, которая приводит к изменению функций и структуры белков.
5) Место локализации всех строительных блоков биомембран, а также всех промежуточных метаболитов.
6) Локализация всех неорганических соединений, причем концентрация неорганических веществ строго детерминирована и регулируется органоидами клетки.
19) Включения в цитозоле растительных клеток, их локализация и функциональное значение.
Цитоплазма клеток состоит из цитозоля, цитоскелета, органелл и включений..Цитозоль обеспечивает взаимосвязь всех компонентов клетки. Кроме того, в нем отбывают и важные биохимические реакции.
Для успешного выполнения этих функций цитозоль имеет специфическое строение. Для того чтобы органеллы клетки были расположены в определенных ее местах, цитозоль должен быть достаточно плотным. Но для того чтобы органеллы можно было перемещать в зависимости от потребностей клетки, он же должен быть достаточно жидким. Поэтому цитозоль является полужидкой субстанцией, плотность которой может изменяться в достаточно широких пределах.
Изменение плотности цитозоля происходит благодаря его переходам в состояния гель-золь. В состоянии геля отдельные белковые компоненты цитозоля полимеризуются, образуя упругую сетку с высокой вязкостью. В состоянии золя крупные молекулы белков в составе цитозоля расщепляются на малые фрагменты, вновь образуя жидкое среда с достаточно низкой вязкостью.
Состояние геля является очень удобным для поддержание формы клетки и фиксации отдельных ее компонентов в определенном положении. Состояние золя позволяет перемещать отдельные органеллы и включения внутри клетки. Кроме того, в таком состоянии легко происходят важные биохимические реакции.
Химический состав цитозоля достаточно разнообразен и может колебаться в широких пределах. Это связано с тем, что он есть связующей структурой для других компонентов клетки и местом проведения биохимических реакций, в результате которых постоянно исчезают одни вещества и синтезируются другие. В цитозоле происходит синтез и расщепление глюкозы, жирных кислот, нуклеотидов, аминокислот. Одним из важнейших процессов, которые происходят в цитозоле, является синтез белка на рибосомах.
Включениями в составе цитоплазмы чаще всего являются продукты жизнедеятельности клетки. Очень часто в виде включений клетки запасают питательные вещества. В виде включений могут накапливаться гликоген, крахмал, белки, жиры и другие соединения.
Движение цитоплазмы в клетке связан с переходами цитозоля между состояниями золь-гель. Он происходит с расходами энергии и может менять свою интенсивность в зависимости от влияния различных факторов. Например, повышение температуры может ускорить протекание биохимических реакций в цитозоле и, соответственно, повлиять на движение цитоплазмы. Изменение освещения растительных клеток также может влиять на движение цитоплазмы. Это связано с необходимостью правильного размещения хлоропластов в клетке для наиболее эффективного фотосинтеза.