
- •1) Цитология - ее цели и задачи. Этапы развития цитологии.
- •2) Развитие современной цитологии. Выявление ультрамикроскопических особенностей, присущих специализированным клеткам.
- •3) Современные положения клеточной теории.
- •4) Методы цитологических исследований. Световая микроскопия - основной метод наблюдения клеток.
- •5) Дифференциальное центрифугирование - метод получения отдельных клеточных компонентов для цитохимического и биохимического анализа.
- •6) Клетки прокариот и эукариот. Особенности и различия в их строении.
- •7) Цитоплазматическая мембрана. Современные представления о строении мембран.
- •8) Надмембранные структуры эукариотических клеток.
- •9) Микрофибриллярная система или система микрофиламентов (актин-миозин).
- •10) Тубулиновая система или система микротрубочек (тубулин-динеин)
- •11) Проявление единства субсистем поверхностного аппарата клетки в реализации основных функций: барьерной, транспортной, рецепторной и контактной.
- •12) Мембранный транспорт макромолекул и частиц; экзоцитоз и эндоцитоз.
- •13) Контактная функция плазматической мембраны. Межклеточные контакты.
- •14) Адгезионные (механические): поясковые десмосомы, точечные десмосомы, полудесмосомы.
- •15) Замыкающие контакты: плотный, промежуточный.
- •16) Проводящие контакты: щелевой контакт, химические синапсы и плазмодесмы.
- •17) Особенности развития и строения прокариотических клеток. Основные гипотезы происхождения прокариотной клетки и ее компартментов.
- •18) Цитоплазма. Общий химический состав цитоплазмы. Организация цитозоля.
- •19) Включения в цитозоле растительных клеток, их локализация и функциональное значение.
- •20) Включения в цитозоле животных клеток, их локализация и функциональное значение.
- •21) Морфология, локализация и структура митохондрий.
- •22) Локализация в мембранах митохондрий основных звеньев окислительного фосфорилирования.
- •23) Митохондрия как полуавтономный органоид.
- •24) Хлоропласты - энергообразующие органоиды растительных клеток.
- •25) Эпр. Строение и химический состав.
- •26) Комплекс Гольджи. Общая характеристика, локализация в клетке, ультраструктура.
- •27) Лизосомы. Структура лизосом и их химическая характеристика.
- •28) Пероксисомы (микротельца). Структура пероксисом. Их химическая характеристика. Функциональное значение пероксисом.
- •29) Структурная и функциональная взаимосвязь всех компартментов вакуолярной системы.
- •30) Роль ядра в жизни клетки и его значение в переносе информацииот днк к белку.
- •31) Основные элементы структуры интерфазного ядра: совокупность интерфазных хромосом (хроматин или днп интерфазного ядра), поверхностный аппарат ядра, ядерный сок (кариоплазма) и ядрышко.
- •32) Разновидности хроматина: деспирализованный эухроматин, конденсированный гетерохроматин и факультативный гетерохроматин. Функциональное значение типов хроматина.
- •33) Функция гистонов, как регуляторов транскрипции и укладки молекул днк. Структурная организация хроматина.
- •34) Основные компаненты поверхностного ядерного аппарата клетки: ядерная оболочка, периферическая плотная пластинка (ламина) и поровые комплексы.
- •35) Кариоплазма. Химический состав.
- •36) Ядрышко - органоид клеточных рибосом. Химия ядрышка, рнк ядрышка.
- •37) Структурно-биохимическая организация рибосом, их роль в синтезе белка.
- •1 Этап. Инициация.
- •2 Этап. Элонгация (удлинение цепи).
- •3 Этап. Детерминация (окончание).
- •38) Гипотезы происхождения эукариотической клетки и основных компартментов эукариотических клеток.
- •39) Жизненный цикл клетки: пресинтетическая, синтетическая, постсинтетическая стадии, митоз.
- •40) Деление прокариотических клеток. Особенности репродукции прокариот.
- •41) Общая организация митоза эукариотических клеток.
- •42) Мейоз, стадии мейоза. Конъюгация хромосом, кроссинговер, редукция числа хромосом.
- •43) Особенности профазы I мейоза.
- •44) Основные различия между митозом (непрямым делением) и мейозом (редукционным делением)
- •45) Котрансляционный транспорт растворимых белков на мембранах гранулярного эпр.
- •46) Клеточный центр: центриоли и диплосома.
- •47) Центросомный цикл в животной клетке.
- •48) Различные типы митоза эукариот.
- •49) Динамика митоза и цитокинеза.
16) Проводящие контакты: щелевой контакт, химические синапсы и плазмодесмы.
Щелевидный контакт представляет собой область протяженностью 6,5—3 мкм, где плазматические мембраны разделены промежутком в 2—3 нм, что после осмирования придает всей этой структуре семислойный вид. Со стороны цитоплазмы никаких специальных примембранньтх структур не обнаруживается. Этот тип соединения встречается во всех типах тканей. Функциональная роль щелевидного контакта заключается, видимо, в передаче ионов и молекул от клетки к клетке. Например, в сердечной мышце передача потенциала действия от клетки к клетке происходит через этот тип контакта, где ионы могут свободно переходить по этим межклеточным соединениям. Поддержание такой ионной связи между клетками зависит от энергии, получаемой благодаря окислительному фосфорилированию.
Синаптический контакт(синапсы) Этот тип контактов характерен для нервной ткани и встречается как между двумя нейронами так и между нейроном и каким-либо иным элементом – рецептором или эффектором (например, нервно-мышечное окончание).
Синапсы — участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому.
Типы синапсов: 1- пресинаптическая мембрана (мембрана отростка нервной клетки); 2 – постсинаптическая мембрана; 3 – синаптическая щель; 4 – синаптические пузырьки; 5 - митохондрии
В принципе подобного рода функциональная нагрузка, передача импульса может осуществляться и другими типами контактов (например, щелевидным контактом в сердечной мышце) однако в синаптической связи достигается высокая эффективность и подвижность реализации импульса. Синапсы образуются на отростках нервных клеток – это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют вид грушевидных расширений, бляшек на конце отростка нервной клетки. Такое терминальное расширение отростка одной из нервных клеток может контактировать и образовывать синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки
нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами или клетками-рецепторами. Следовательно, синапс — это структура, образующаяся между участками двух клеток, так же как и десмосома Мембраны этих клеток разделены межклеточным пространством синаптической щелью шириной около 20 — 30 нм Часто в просвете этой щели виден тонковолокнистый, перпендикулярно расположенный по отношению к мембранам материал. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой, воспринимающей импульс, — постсинаптической. В электронном микроскопе обе мембраны выглядят плотными, толстыми. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей, синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран из-за скопления около нее со стороны цитоплазмы множества тонких фибрилл.
Синаптические нервные окончания удается выделить при фракционировании клеточных компонентов нервной ткани. При этом оказывается, что структура синапса очень устойчива: после разрушения клеток участки контактов отростков двух соседних клеток отрываются, но не разъединяются. Тем самым можно считать, что синапсы помимо функции передачи нервного возбуждения обеспечивают жесткое соединение поверхностей двух взаимодействующих клеток.
Плазмодесмы.Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 40—50 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетку. Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет из себя синцитий' объединение многих клеточных территорий с помощью цитоплазматических мостиков. Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума сосед них клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка. У только что разделившихся клеток число плазмодёсм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.
Функциональная роль плазмодёсм очень велика, с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли. Через плазмодесмы происходит заражение клеток растительными вирусами.