
- •Предисловие
- •Часть первая общие свойства пиротехнических составов и их компонентов
- •Глава I
- •Общее понятие о пиротехнических средствах и составах
- •§ 1.Классификация
- •§ 2.Горение составов
- •§ 3. Требования, предъявляемые к пиротехническим средствам и составам
- •§ 4. Назначение компонентов
- •§5. Возможные высокоэкзотермические реакции
- •§ 6. Способность к горению различных веществ и смесей
- •Глава II окислители
- •§ 1. Выбор окислителей
- •§ 2. Свойства окислителей
- •§ 3. Гигроскопичность
- •§ 4. Технические требования
- •Глава III горючие
- •§ 1.Выбор и классификация
- •§ 2. Высококалорийные горючие
- •Количество тепла в ккал, выделяющееся при сгорании 1 см3 некоторых горючих (q4)
- •§ 3. Технические требования к порошкам металлов
- •§ 4. Производство порошков металлов
- •§ 5. Неорганические горючие средней калорийности
- •§ 6. Органические горючие
- •Глава IV связующие - органические полимеры
- •§ 1. Роль связующих. Испытание прочности звездок
- •§ 2. Факторы, влияющие на прочность
- •Зависимость прочности изделия от давления прессования (испытывались высоты)шашки диаметром 20 мм и такой же высоты)
- •§ 3. Классификация связующих их свойства
- •Некоторые свойства органических горючих веществ
- •Глава V принципы расчета пиротехнических составов
- •§ 1. Двойные смеси
- •§2. Тройные и многокомпонентные смеси
- •§ 3. Составы с отрицательным кислородным балансом
- •§ 4. Металлохлоридные составы
- •§ 5. Составы с фторным балансом
- •Глава VI теплота горения, газообразные продукты и температура горения составов
- •§ 1. Вычисление теплоты горения
- •Теплота горения пиротехнических составов (без учета догорания за счет кислорода воздуха)
- •§ 2. Экспериментальное определение
- •§ 3. Связь между назначением составов и теплотой их горения
- •§ 4. Газообразные продукты горения
- •§ 5. Определение температуры горения
- •§ 6. Экспериментальное определение
- •Tипы оптических пирометров
- •§ 7. Связь между назначением состава и температурой горения
- •Глава VII чувствительность составов
- •§ 1. Определение чувствительности к тепловым воздействиям
- •Определение чувствительности к лучу огня
- •Дополнительные испытания
- •§ 2. Определение чувствительности к механическим воздействиям
- •Определение чувствительности к удару
- •§ 3. Факторы, влияющие на чувствительность составов к начальному импульсу
- •Глава VIII горение составов
- •§ 1. Механизм горения
- •§ 2. Факторы, влияющие на скорость горения
- •Каталитические добавки
- •Физические факторы
- •Глава IX взрывчатые свойства составов
- •Взрывчатые свойства двойных смесей:
- •Расширение в блоке Трауцля в см3 в зависимости от начального импульса; количество состава 20 г
- •Глава X физическая и химическая стойкость составов
- •§ 1. Физические изменения
- •§ 2. Химические изменения
- •Составы, содержащие порошки магния или алюминия и неорганические окислители
- •Составы, не содержащие порошков металлов
- •§ 3. Методы определения гигроскопичности и химической стойкости
- •§ 4. Допустимые сроки хранения
- •Специальные свойства отдельных видов пиротехнических составов
- •Глава XI осветительные составы
- •§ 1. Осветительные составы и средства
- •Классификация осветительных средств и составов
- •§ 2. Краткие сведения об устройстве осветительных средств Средства артиллерии
- •Основные характеристики американских саб (скорость снижения факелов 2,5—3,0 м/с)
- •Общевойсковые средства
- •§ 3. Световые характеристики осветительных составов и средств
- •§ 4. Тепловое и люминесцентное излучение
- •§ 5. Специальные требования к осветителным составам; двойные смеси
- •Термохимические характеристики двойных смесей
- •Световые показатели двойных смесей с различными окислителями (диаметр звездок 24 мм, оболочка картонная)
- •Светотехнические характеристики двойных смесей нитрата бария с алюминиевой пудрой
- •§ 6. Многокомпонентные осветительные составы
- •Самоотвёрждающиеся составы
- •Самоотвёрждающиеся составы на основе полимерных горючих-связующих (патенты сша 3.369.964, 1968; 3.462.325, 1969; 2.984.558, 1961)
- •§ 7. Факторы, влияющие на эффективность осветительных составов и средств
- •§ 8. Краткие сведения о пиротехнических ик-излучателях
- •Характеристики пиротехнических ик-излучателей
- •Энергетические характеристики пиротехнических источников ик-излучения
- •Энергетические величины и единицы
- •§ 9. Фотометрирование и радиометрирование пламен пиротехнических составов
- •Глава XII фотоосветительные составы
- •§ 1. Ночное воздушное фотографирование
- •§ 2. Фотоматериалы
- •§ 3. Фотоавиабомбы
- •§ 4. Фото патроны
- •Основные характеристики фотоосветительных патронов
- •§ 5. Фотосоставы. Факторы, влияющие на светотехнические характеристики вспышек и свойства фотосоставов
- •Светотехнические характеристики фотосмесей, содержащих кс104 и металлические горючие в стехиометрических соотношениях (ст) и с перегрузкой горючим (п) в количестве h'/ol против стехиометрии [119]
- •§ 6. Методы определения характеристик фотовспышек
- •§ 7. Световые имитаторы, фотозаряды-маркеры
- •Глава XIII трассирующие составы
- •§ 1. Трассирующие средства
- •Назначение трассеров и требования к ним
- •Классификация трассирующих средств
- •§ 2. Краткие сведения об устройстве трассеров Трассирующие пули
- •Артиллерийские снаряды
- •Снаряды с самоликвидацией через трассер
- •Трассеры к управляемым реактивным снарядам (pc) и авиабомбам. Специальные виды трассеров
- •§ 3. Трассирующие составы
- •§ 4. Воспламенительные составы для трассеров
- •§ 5. Факторы, влияющие на эффективность трассирующих составов и трассеров
- •§ 6. Видимость трассы и расчет необходимой силы света пламени
- •§ 7. Испытания трассеров
- •Глава XIV составы сигнальных огней
- •§ 1. Системы сигнализации. Требования, предъявляемые к составам
- •§ 2. Характер излучения пламени
- •§ 3.Разработка рецептов составов и основные требования к их компонентам
- •§ 4. Составы желтого огня
- •§ 5. Составы красного огня
- •§ 6. Составы зеленого огня
- •§ 7. Составы синего и белого огня
- •§ 8. Методы испытания
- •Глава XV зажигательные составы
- •§ 1. Зажигательные средства и зажигательные составы. Основные требования к составам
- •§ 2. Классификация зажигательных средств и составов Зажигательные средства
- •Зажигательные составы
- •§ 3. Составы с порошками металлов и окислителями — солями и применение их в малокалиберных снарядах
- •Воспламенение и горение жидких топлив
- •§ 4. Термитно-зажигательные составы
- •§ 5. Сплав «электрон» и его применение
- •§ 6. Смеси на основе нефтепродуктов напалм
- •§ 7. Фосфор и его соединения
- •§ 8. Галоидные соединения фтора
- •§ 9. Прочие зажигательные вещества и смеси
- •§ 10. Методы испытания зажигательных составов
- •Глава XVI составы маскирующих дымов
- •§ 1. Общие сведения об аэрозолях
- •§ 2. Способы получения аэрозолей.
- •§ 3. Составы маскирующих дымов и предъявляемые к ним требования
- •Глава XVII составы цветных дымов
- •§ 1. Цветные облака и способы их получения
- •§ 2.Красители
- •§ 3. Составы цветных дымов
- •Глава XVIII твердые пиротехнические топлива
- •§ 1. Классификация и энергетические характеристики
- •§ 2. Эксплуатационные требования
- •§ 3. Окислители
- •§ 4. Органические и металлические горючие
- •Глава XIX безгазовые составы
- •Глава XX воспламенительные составы. Газогенераторные составы. Прочие виды составов
- •§ 1. Воспламенительные составы и предъявляемые к ним требования
- •§ 2. Воспламенительные составыдля ракетных двигателей
- •§ 3. Газогенераторные составы
- •Высокоазотные газогенераторные составы по данным [117] в процентах
- •§ 4. Прочие виды составов
- •Глава XXI применение пиротехнических составов в народном хозяйстве
- •§ 1. Составы для получения химикатов
- •§ 2. Использование энергии пиротехнических составов
- •§ 3. Спичечные составы
- •§ 4. Фейерверочные составы
- •Глава XXII основы технологии и оборудование пиротехнического производства
- •§ 1. Подготовка компонентов
- •Техническая характеристика шкафа
- •§ 2. Приготовление составов
- •§ 3.Уплотнение составов
- •§ 4. Снаряжение и сборка изделий
- •Приложения
- •Список литературы
- •Оглавление
Глава VIII горение составов
§ 1. Механизм горения
Процесс сгорания составов можно разделить яа три стадии:
инициирование (зажжение)
воспламенение
горение.
Инициированиеобычно осуществляется при помощи теплового импульса, который сообщается ограниченному участку поверхности состава.
Воспламенением принятоназывать распространение горения по всей поверхности состава.
Собственно горениемназывают движение процесса в глубину.
Скорость воспламенения составов во много раз больше, чем скорость их горения. Для одного и того же состава скорость воспламенения зависит:
1) от степени измельчения компонентов; чем тоньше измельчение, тем больше общая поверхность состава и тем быстрее идет воспламенение;
2) от плотности состава: чем больше плотность, тем меньше становится общая поверхность состава (уменьшается количество пор) и тем труднее и медленнее происходит воспламенение;
3) от начальной температуры: чем она выше, тем легче и быстрее протекает воспламенение;
4) от внешнего давления: при его повышении скорость воспламенения сильно увеличивается; сжатые газы передают в этом случае больше тепла в единицу времени воспламеняемой ими поверхности;
5) от состава газовой фазы и, в частности, от содержания в ней кислорода, который активно участвует в процессах воспламенения многих пиротехнических составов.
Наибольшая скорость воспламенения наблюдается для слабоуплотненных фотосмесей я для дымного пороха; дорожка из дымного пороха в открытом пространстве воспламеняется соскоростью 3—4 м/с. 94
Процесс горения пиротехнических составов чрезвычайно сложен. Изучению его уделялось сравнительно мало внимания. Наряду с этим в литературе за последние 15—20 лет опубликовано много работ по исследованию механизма горения ВВ и порохов.
Конечно, процесс горения пиросоставов имеет ряд особенностей но сравнению с процессами горения ВВ или лорохов, но многие закономерности аналогичны, что было доказано рядом экспериментов.
В связи с этим далее в этой главе часто проводится аналогия между закономерностями горения пиросоставов и взрывчатых веществ (и порохов).
Процесс горения пиротехнических составов представляет собой совокупность многих экзо и эндотермических химических процессов и физических процессов диффузии и теплопередачи.
Горение составов начинается в конденсированной фазе и заканчивается в газовой фазе (в пламени).
Процессы, протекающие в конденсированной фазе, чаще всего бывают (суммарно) слабоэкзотермическими; степень экзотермичности реакции в конденсированной фазе зависит как от рецепта состава, так в некоторой степени от условий его горения (от внешнего давления). Процессы, протекающие в газовой фазе (в пламени) всегда суммарно, являются экзотермичными. Во многих случаях процессы, протекающие в конденсированной фазе, могут осуществляться только за счет тепла, поступающего из газовой фазы (из пламени).
Это положение подтверждается наблюдением, что многие пиротехнические составы теряют способность к горению при низких давлениях: менее 1 мм рт. ст. -(133 Н/м2).
Вопрос о соотношении количества тепла, выделяющегося в конденсированной и газовой фазе, должен рассматриваться индивидуально для каждого вида составов. Количественные данные по этому вопросу пока отсутствуют.
Непременным условием для нормального равномерного горения является равенство теплоприхода и теплоотвода во всех зонах реакции. При нарушении этого условия горение или затухает или становится неравномерным, возникает пульсация .
Однако расчленение процесса горения на две стадии является только весьма грубым приближением к действительности.
Прежде всего следует напомнить, что пиросоставы представляют собой микрогетерогенную систему.
Для осуществления быстрой реакции необходимо тесное (молекулярное) соприкосновение реагирующих между собой веществ. В твердом состоянии этой возможности почти не представляется; реакции между твердыми веществами протекают, как известно, медленно, даже при очень высоких температурах; тот
' Подробнее с пульсирующем горении см. [4, 1-е изд., 1957].
факт, что многие «малогазовые» составы горят довольно быстро, не противоречит высказываемому положению, так как основная реакция окисления горючего в них протекает в жидкой или в газовой фазе, образующейся при температуре горения.
Быстрое взаимодействие между компонентами всоставе начинается только тогда, когда хотя бы один из них переходит в жидкое иливгазообразное состояние.
В конденсированной фазе .возможно протекание двух видов процессов: тверд.+жидк.; жидк.+жидк.
Рис.
8.1. Схема горения пиротехнического
состава:
1-пиротехнический состав; 2-зона прогрева; 3-зона реакции в конденсированной фазе; 4-зона реакции в газовой фазе; 5-продукты реакции; 6- реакция на поверхности раздела фаз
Компоненты составов часто имеют резко отличающиеся друг от друга температуры плавления и кипения или термического разложения. Имея это в виду, можно понять, почему во многих случаях реакции между компонентами (или продуктами их разложения) протекают на поверхности раздела конденсированной и газовой фаз; в этом случае возможны варианты: тверд.+газ; жидк.+газ.
Скорость химических реакций в большой мере зависит также от скорости физических процессов: газовой (и жидкостной) диффузии и возможности быстрого удаления из сферы реакции продуктов горения.
В зоне наиболее высокой температуры все реагирующие вещества будут находиться в газообразном состоянии, и здесь реакция будет протекать в системе: газ + газ.
В этой последней стадии горения во многих случаях принимает участие кислород воздуха. Следует заметить, что температура в пламени многих составов значительно выше, чем температура в пламени порохов или нитросоединаний. .
Все сказанное ранее о механизме горения пиросоставов может быть проиллюстрировано схемой, во многом сходной со схемой горения пороха, предложенной Я. Б. Зельдовичем (рис. 8.1).
Повышение гемпературы в конденсированной фазе может происходить как за счет тепла, передающегося из газовой фазы (или с поверхности раздела фаз), так часто и за счет тепла реакции, протекающей в самой конденсированной фазе.
Решению вопроса, какие процессы, в конденсированной или в газовой фазе, доминируют при горении какого-либо пиросостава, может способствовать изучение зависимости скорости горения от давления. Чем больше скорость горения зависит от давления, тем больше удельный вес реакций, протекающих в газовой фазе.
Однако и описанная выше схема горения пиросоставов не вполне соответствует действительности.
В настоящее время доказано экспериментально, что при горении многих пиросоставов происходит диспергирование частиц непрореагировавших компонентов, в первую очередь частиц металлических порошков, а также капель расплава окислителя (нитрата).
Это выбрасывание в газовую фазу мельчайших частиц обусловливается тем, что образующиеся в конденсированной фазе газы отрывают и увлекают за собой впламя твердые (и жидкие) частицы компонентов состава. Следовательно, и в газовой фазе во многих случаях сохраняется гетерогенность системы, и ближайшую к конденсированной фазе зону пламени можно назватьдымогазовой зоной.При дальнейшем движении в пламени эти частицы исчезают, реагируя с окружающей их газовой средой.
В отдельных случаях выяснение механизма горения облегчается рассмотрением свойств входящих в состав компонентов.
В качестве примера ниже дается описание механизма горения двойной смеси, содержащей хлорат калия и магний.
Хлорат калия плавится при 360°С1; магний — при 650° С, а кипит при 11003 С.
Взаимодействие этих веществ можно представить себе следующим образом:
1.В конденсированной фазе:
а) КСlOзжидк+Mg тв—>
б) КСlOзжидк—КС1+кислород
2. Н а поверхности раздела фаз ив дымогазовой зоне пламени:
а) Мg тв+кислород—>
б) Mgжидк+ кислород—>
3. В -газовой фазе (в пламени):
а) Mgnap+ кислород—>
б) Mgnap+кислород воздуха—>
Выяснению механизма горения пиросоставов помогают наблюдения при совместном использовании микроскопа и скоростной киносъемки.
Введение термопар внутрь шашки состава и снятие в процессе его горения кривой температура — время может дать некоторые сведения о прединициальных процессах, т. е. процессах, предшествующих возникновению горения. К сожалению, до сего времени для пиросоставов (не считая смесевых порохов) в открытой литературе не имеется данных о толщине реакционной зоны и о температуре на поверхности К-фазы.
' При наличии в хлорате калия каталитических добавок (MnO2, Со2О3 и др.) разложение его происходит уже при 200—250° С.