Скачиваний:
172
Добавлен:
08.01.2014
Размер:
2.24 Mб
Скачать

2.3. Анализ связей типа "признак-признак"

Для измерения связи между двумя номинальными признаками в литературе предлагается более сотни коэффициентов. Это является следствием того, что интересующее нас явление - указаннуюсвязь (еще раз подчеркнем, что мы говорим о статистической связи, хотя в действительности нас, как правило, интересуют соответствующие причинно-следственные отношения) – оказывается возможным формализовать по-разному. И каждому способу формализации отвечает свое понимание сути искомой связи, своя априорная модель того, что мы хотим изучить.

Мы не будем описывать все известные из литературы коэффициенты рассматриваемого характера. Коснемсялишь трех подходовк измерению парной связи между номинальными признаками. Эти подходы являются наиболее употребительными на практике. Надеемся, что их анализ, осуществленный ниже, заставит читателя "почувствовать" ту сложность социальной реальности, которая обусловливает возможность выделения в ней разных сторон, каждая из которых по-своему "представляет" изучаемое явление, по-своему формализуется.

2.3.1. Коэффициенты связи, основанные на критерии "хи-квадрат"

2.3.1.1. Понимание отсутствия связи между признаками как их статистической независимости.

Приведем простой пример, иллюстрирующий рассматриваемый подход к пониманию связи между двумя номинальными признаками. Предположим, что перед нами стоит задача оценки того, зависит ли профессия респондента от его пола. Пусть наша анкета содержит соответствующие вопросы и в ней перечисляются пять вариантов профессий, закодированных цифрами от 1 до 5; для обозначения же мужчин и женщин используются коды 1 и 2 соответственно. Для краткости обозначим первый признак (т.е. признак, отвечающий вопросу о профессии респондента) через Y, а второй (отвечающий полу) - через X. Итак, наша задача состоит в том, чтобы определить, зависит ли Y от X.

Предположим, что исходная таблица сопряженности, вычисленная для каких-то 100 респондентов имеет вид:

Таблица 8.

Пример таблицы сопряженности для двух независимых признаков

Профессия

Пол

Итого

1

2

1

18

2

20

2

18

2

20

3

45

5

50

4

0

0

0

5

9

1

10

Итого

90

10

100

Вероятно, любой человек согласится, что в таком случае признаки можно считать независимыми, поскольку и мужчины, и женщины в равной степени выбирают ту или иную профессию: первая и вторая профессии пользуются одинаковой популярностью и у тех и у других; третью – выбирает половина мужчин, но и половина женщин; четвертую не любят ни те, ни другие и т.д. Итак, мы делаем вывод: независимость признаков означает пропорциональность столбцов (строк; с помощью несложиных арифметических выкладок можно показать, что пропорциональность столбцов эквивалентна пропорциональности строк) исходной частотной таблицы. Заметим, что в случае пропорциональности “внутренних” столбцов таблицы сопряженности, эти столбцы будут пропорциональны также и столбцу маргинальных сумм по строкам. То же – и для случая пропорциональности строк они будут пропорциональны и строке маригинальных сумм по столбцам.

Приведенная частотная таблица получена эмпирическим путем, является результатом изучения выборочной совокупности респондентов. Вспомним, что в действительности нас интересует не выборка, а генеральная совокупность. Из математической статистики мы знаем, что выборочные данные никогда стопроцентно не отвечают “генеральным”. Любая, самая хорошая выборка всегда будет отражать генеральную совокупность лишь с некоторым приближением, любая закономерность будет содержать т.н. выборочную ошибку, случайную погрешность. Учитывая это, мы, вероятно, будем полагать, что, если столбцы выборочной таблицы сопряженности мало отличаются от пропорциональных, то такое отличие скорее всего объясняется именно выборочной погрешностью и вряд ли говорит о том, что в генеральной совокупности наши признаки связаны. Так мы проинтерпретируем, например, таблицу 9 (по сравнению с таблицей 8 в ней четыре частоты изменены на единицу) и, наверное, таблицу 10 (те же частоты изменены на две единицы). А как быть с таблицей 11?

Таблица 9.