Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
249
Добавлен:
11.03.2016
Размер:
1.69 Mб
Скачать

5.7. Неустановившееся движение жидкости в трубах

Неустановившееся движение - движение, когда скорость и давление в отдельных точках потока жидкости изменяются по времени. В этом случае скорость и давление являются функцией не только положения ее отдельной точки относительно выбранных координат, но и времени. Следовательно, средняя скорость в живом сечении потока и расход его изменяются по времени.

В практике эксплуатации систем водоснабжения и водоотведения достаточно часто встречаются случаи неустановившегося движения потоков. Неустановившееся движение наблюдается как в напорных трубах, так и в открытых руслах.

В напорных трубах поток жидкости ограничен жесткими стенками. Площадь живого сечения потока не зависит от времени и может являться функцией расстояния вдоль трубы, т.е. . На расходQ расстояние не влияет. Расход жидкости зависит от времени, т.е.. Однако скорость связана с площадью сечения, следовательно, .

Средняя скорость потока для данного момента времени

.

Для получения уравнения, описывающего изменения гидродинамических характеристик потоков при неустановившемся движении, используется уравнение неустановившегося движения для элементарной струйки несжимаемой жидкости.

Уравнение неустановившегося движения для элементарной струйки вязкой несжимаемой жидкости записывается в виде уравнения Бернулли для двух живых сечений 1-1 и 2-2:

, (5.45)

где - потери напора по длине струйки между сечениями.

Интеграл по аналогии с другими слагаемыми уравнения Бернулли называют инерционным напором .

В зависимости от вида ускорения движения инерционный напор может быть как положительным, так и отрицательным. Для ускоренного движения потока интеграл положительный, а для замедленного движения - отрицательный.

При неустановившемся движении жидкости в трубах на определенном участке длиной также учитывается инерционный напор .

В цилиндрической трубе площадь сечения по длине потока, средние скорости и для рассматриваемого момента времени.

Потери напора по длине на участке от сечения 1-1 до сечения 2-2 определяются по формуле Дарси-Вейсбаха:

.

Ускорение постоянно по длине участка трубы; следовательно, инерционный напор

. (5.46)

Уравнение неустановившегося движения в трубе согласно (5.45)

. (5.47)

Данное уравнение (5.47) - основное уравнение неустановившегося движения жидкости для цилиндрической трубы.

Подобно потерям напора, инерционный напор влияет на значение полной удельной энергии во втором сечении. Величина и знак инерционного напора зависят от значения и направления ускорения потока. При замедляющемся движении() инерционный напор будет отрицательным, т.е. на пути между расчетными сечениями будет высвобождаться кинетическая энергия; и если потери напора по длине на этом участке будут невелики (), то полный напор для данного момента времени между расчетными сечениями будет возрастать. При положительном ускорении потока () за тот же промежуток времени между сечениями удельная энергия жидкости уменьшается.

5.8. Общие сведения и описание гидравлического удара в трубах

В конце XIX в. на Московском водопроводе происходили аварии в результате разрыва труб. Анализируя причины аварии, Н. Жуковский установил, что разрыв труб был связан с быстрым закрытием на трубопроводе задвижек, в результате этого происходило резкое уменьшение скорости перед задвижкой. Снижение скорости до нуля привело к тому, что кинетическая энергия потока воды преобразовывалась в потенциальную энергию в виде увеличения давления. В результате этого энергия затрачивалась на сжатие воды в трубе и на деформацию ее стенок.

Явление резкого повышения давления в трубе при быстром изменении скорости движения жидкости называется гидравлическим ударом. Основные положения по исследованию гидравлического удара в трубах были опубликованы в 1899 г. в труде Н. Жуковского «О гидравлическом ударе». При теоретических исследованиях он принимал жидкость невязкой, однако сжимаемой, а стенки трубопровода - абсолютно жесткими.

Гидравлический удар в трубах представляет собой быстродействующий периодический процесс, обусловленный упругими деформациями жидкости и стенок трубы. При резком закрытии задвижки (затвора) в слоях жидкости, находящихся у задвижки, повышается давление. Остановка жидкости и повышение давления происходят от одного слоя к другому. Увеличение давления осуществляется с большей скоростью и распространяется по длине трубопровода от задвижки к его начальному сечению, создавая волну повышения давления. Упругая деформация жидкости и стенок связана непосредственно со скоростью распространения изменения давления по длине трубопровода. Скорость, с которой происходит повышение давления, называется скоростью распространения ударной волны С или скоростью распространения упругой деформации жидкости.

Явление гидравлического удара можно представить в виде этапов (циклов) развития процесса изменения значения давления в трубопроводе диаметром d.

Рассмотрим физическую природу гидравлического удара, разделив явление на отдельные этапы. Схема гидравлического удара в трубопроводе для анализа явления показана на рис. 5.16. Жидкость в трубе до закрытия затвора движется со скоростью и давлением .

В результате резкого и полного закрытия затвора, находящегося в конце трубопровода, через некоторое время поперечные слои жидкости, расположенные возле него, остановятся, а затем будут последовательно останавливаться другие слои на пути к резервуару. Жидкость, обладая упругими свойствами, сжимается. Начало сжатия слоев происходит у затвора. Сечение (см. рис. 5.16), выражающее торможение поперечных слоев жидкости в трубопроводе (фронт волны), будет перемещаться одновременно с повышением давления со скоростьюС, т.е. со скоростью распространения ударной волны.

Рис. 5.16. Схема трубопровода для анализа гидравлического удара

Деформация жидкости в виде ее сжатия и повышения давления распространяется в обратную сторону начального движения потока, имеющего скорость , и за время t достигнет начала трубы в резервуаре.

Первый этап гидравлического удара заканчивается, когда жидкость полностью будет сжата по всей длине трубы, стенки ее будут расширены на величину , а повышение давления распространяется на всю длину трубы и скорость движения жидкости снизится до нуля, т.е. . Освобождающаяся часть объема трубы в результате заполнится жидкостью из резервуара. Начальная плотность жидкостипри этом изменится, и плотность ее станет равной.

Повышение давления, передающееся от слоя к слою по направлению к резервуару, называется прямой ударной волной. Время перемещения прямой ударной волны . В результате остановки жидкости и ее сжатия в трубопроводе давление увеличится на величину и установится равным . Под действием избыточного давления жидкость будет двигаться из трубы в резервуар. Фронт ударной волны начнет перемещаться обратно к затвору со скоростью С, при этом будет происходить уменьшение давления. Таким образом, в конце второго этапа в результате упругости жидкости и стенок трубопровода жидкость будет двигаться в сторону резервуара со скоростью , а давление выровняется и установится равным первоначальному.

Повышение давления в трубе по направлению к затвору называется отраженной ударной волной. Время пробега отраженной ударной волны .

В начальный момент третьего этапа масса жидкости в трубе со скоростью будет стремиться оторваться от затвора. В связи с тем что отрыв массы не может иметь место, произойдет резкое понижение давления в трубопроводе.

Фронт ударной волны будет перемещаться в сторону резервуара со скоростью С, при этом будет происходить сжатие стенок трубы и расширение жидкости. Понижение давления происходит от слоя к слою в направлении к затвору, и оно установится . Жидкость в трубе в конце этого этапа будет находиться под пониженным давлением . Так как давление на входе в резервуар, определяемое напором жидкости в нем, будет больше пониженного давления в трубе, то жидкость начнет перемещаться от резервуара к затвору. В конце четвертого этапа, принимая во внимание вязкость жидкости, давление в трубопроводе установится меньше начального давления и начальной скорости. Движение жидкости приобретает направление, как в начале гидравлического удара до момента закрытия затвора.

Развитие процесса гидравлического удара происходит в виде повторения этапов. Учитывая вязкость жидкости и деформацию стенок трубы, процесс гидравлического удара будет затухающим и значение ударного давления постепенно уменьшается. Цикл гидравлического удара включает этапы процесса повышения и понижения давления в трубе. Время периода пробега прямой и отраженной ударных волн называется фазой гидравлического удара:

. (5.48)

Экспериментальными исследованиями на трубах Н. Жуковским было отмечено до 12 циклов с постепенным уменьшением значения . В процессе цикличного колебательного движения потери энергии обусловлены упругими деформациями жидкости и стенок трубы, а также потерями напора в результате работы сил трения. В связи с этим колебания давления при гидравлическом ударе имеют затухающий характер и в конце его давление снижается до нуля.

На рис. 5.17 показана диаграмма изменения повышения давления во времени при гидравлическом ударе непосредственно у затвора.

Рис. 5.17. Изменение давления у затвора в зависимости от времени

Соседние файлы в папке лекции для заочн