
- •1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медико-генетические аспекты семьи.
- •2.Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого. Химический состав клетки.
- •4.Клетка – элементарная структурно-функциональная биологическая единица. Прокариотические и эукариотические клетки.
- •5. Клеточная теория. Значение теории в обосновании диалектико-материалистической концепции единства жизни.
- •7. Энергообразующие системы клетки и их характеристики. Фазы диссимиляции у гетеротрофов.
- •8. Ассимиляция в гетеротрофной клетке. Её фазы. Сущность.
- •9. Гликолиз и тканевое дыхание. Сущность, биологическое значение. Энергообразующие системы клетки. Окислительное фосфорилирование.
- •10. Качественные особенности обмена веществ (динамическая устойчивость, особенности биоэнергетики, ферментативность, энтропия).
- •11. Гипотезы происхождения эукариотических клеток (симбиотическая и инвагинационная).
- •12. Клеточный цикл, его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.
- •13. Физиологическая и репаративная регенерация. Биологическое и медицинское значение проблем регенерации.
- •14. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.
- •15. Строение днк. Модель днк Уотсона-Крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.
- •16. Основные требования, предъявляемые к материальному субстрату, ответственному за наследственность. Реализация наследственной информации.
- •17. Этапы синтеза белка (экспрессия гена). Пути транспорта синтезированного белка в клетке и за её пределами.
- •19. Генетические и цитологические карты хромосом.
- •20. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка. Экспериментальное обоснование триплетного кода в опытах Ниринберга.
- •21. Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
- •22. Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-рнк. Геном человека.
- •23. Регуляция работы генов. Значение гистонов. Структура оперона. Роль структурных генов, промотора, оператора, регулятора, факторов транскрипции (индукторов).
- •24. Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.
- •25. Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (hla). Его значение в трансплантологии
- •27. Ген - функциональная единица наследственности. Молекулярное строение гена у прокариот и эукариот. Гипотеза "Один ген - один фермент", ее современная трактовка.
- •28. Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).
- •29. Размножение - универсальное свойство живого, обеспечивающее материальную непрерывность в ряду поколений. Эволюция размножения, формы размножения
- •30. Гаметогенез и мейоз: цитологическая и цитогенетическая характеристика. Биологическое значение мейоза. Сходства и отличия митоза и мейоза.
- •31. Отличие овогенеза от сперматогенеза. Морфология семенников и яичников.
- •32. Характеристика основных этапов оплодотворения. Биологическое значение оплодотворения. Половой диморфизм. Партеногенез.
- •Классификации партеногенеза
- •Распространенность у животных у членистоногих
- •У позвоночных
- •У растений
- •34.Эмбриональная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки
- •36. Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.
- •37. Онтогенез и его периодизация. Прямое и непрямое развитие.
- •38. Общие закономерности онтогенеза многоклеточных. Реализация наследственной информации в становлении фенотипа.
- •39. Эмбриональная индукция. Дифференциация и интеграция в развитии. Вклад г. Шпемана, г.В. Лопашова и Дж. Гердона.
- •41. Постнатальный онтогенез и его периоды. Роль эндокринных желез (щитовидной, гипофиза, половых) в регуляции жизнедеятельности организма в постнатальном периоде.
- •42. Роль наследственности и среды в онтогенезе. Способы их оценки. Близнецовый метод, коэффициент наследственности. Критические периоды развития. Тератогенные факторы среды.
- •43.Биологические ритмы. Классификация. Параметры ритма. Значение биологических ритмов для медицины. Хрономедицина, хронодиагностика и хронотерапия
- •44.Биоритмы. Регуляция циркадианных систем. Роль эпифиза и схя в синхронизации биоритмов. Биоритмы и алкоголь. Теория и практика.
- •45.Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
- •46. Биоритмы и возраст. Хронобиологическая трактовка тезиса «Старость и болезнь – это стеснённая в своей свободе жизнь».
- •47. Определение старения. Периодизация жизни человека. Биология продолжительности жизни. Теории старения (авторы, суть теорий).
- •48.Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста.
- •49. Видовая продолжительность жизни человека. Клиническая и биологическая смерть. Реанимация.
- •50. Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.
- •53. Цели и задачи хронобиологии и хрономедицины. Классификация ритмов и природа ритмов. Эндогенные ритмы и доказательство эндогенной природы активных ритмов. Опыт ж. Де Мейрана. Правило ю. Ашоффа.
- •55. Здоровье и биологические ритмы. Факторы определяющие здоровье. Уравнение Гомперца-Мейкема.
- •56. Предмет, задачи, методы генетики. Этапы развития генетики. Вклад ученых в развитие генетики. Значение генетики для медицины.
- •57. Генотип, геном, фенотип. Фенотип как результат реализации наследственной информации в определённых условиях среды.
- •58. Взаимодействие аллелей в детерминации признаков: доминирование, промежуточное проявление, рецессивность, кодоминирование, аллельная комплементация и исключение.
- •59. Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Тест полового хроматина и его применение в медицине.
- •60, 61. Наследственность и изменчивость – фундаментальные свойства живого, их диалектическое единство.
- •62. Множественные аллели и полигенное наследование на примере человека. Наследование гиперхолестеринемии, муковисцидоза, серповидноклеточной анемии, фенилкетонурии и др.
- •63.Наследование групп крови и резус-фактора. Практическое значение.
- •64. Основные положения хромосомной теории наследственности. Кариотип и идеограмма хромосом человека. Характеристика кариотипа человека в норме. Половой хроматин.
- •65. Сцепленная с полом наследственность. Наследование признаков, контролируемых генами х и y хромосомами человека. Полигенное наследование.
- •66. Цитоплазматическая наследственность. Роль в передаче наследственных заболеваний. Наследование зрительной невропатии Лебера и др.
- •67. Человек как специфический объект генетического анализа. Методы изучения наследственности человека. Кариотипирование и экспресс-анализ полового хроматина в медицине.
- •Методы изучения наследственности человека
- •68. Основные методы изучения генетики человека (генеалогический, онтогенетический, цитогенетический, близнецовый, популяционный).
- •71. Характеристика методов пренатальной диагностики. Критерии определения типа наследования генеалогическим методом. Биохимические методы. Понятие о скрининг - программах.
- •Методы пренатальной диагностики
- •72. Болезни с нетрадиционным наследованием. Митохондриальные болезни. Наследованием невропатии Лебера.
- •74. Генная инженерия. Программа «Геном человека». Алгоритм генной инженерии. Понятие о генетических векторах. Генная терапия.
- •76. Использование молекулярной биологии в медицинских целях. Генная терапия. Ее методы. Проблемы биотехнологии в медицине и промышленности.
- •77. Формы изменчивости: модификационная, комбинативная, мутационная и их значение в онтогенезе и эволюции.
- •78. Модификационная изменчивость. Норма реакции генетически детерминированных признаков. Фенокопии. Адаптивный характер модификаций. Взаимодействие среды и генотипа в проявлении признаков человека.
- •80. Мутационная изменчивость. Классификация мутаций. Мутации в половых и соматических клетках. Понятие о хромосомных и генных болезнях. Примеры.
- •Мутационная теория канцерогенеза
- •Генетическая опасность загрязнения окр .Среды.
- •82.Генные мутации. Сущность и механизм возникновения молекулярно-наследственных болезней человека (фенилкетонурия, серповидно-клеточная анемия и др.)
- •84. Сущность молекулярных наследственных болезней человека (фенилкетонурия, серповидноклеточная анемия, болезнь Вильсона, муковисцидоз и др.). Возможность их профилактики и лечения.
- •86. Жизненные циклы паразитов. Чередование поколений и феномен смены хозяев. Промежуточные и основные хозяева на примере лентеца широкого.
- •87. Методы диагностики паразитарных болезней
- •88. Популяционный уровень взаимодействия паразитов и хозяев. Типы, принципы регуляции и механизмы устойчивости системы "паразит-хозяин".
- •89. Дизентерийная амёба и балантидий. Морфология, цикл развития, обоснование лабораторной диагностики, профилактика. Систематическое положение.
- •90. Характеристика класса жгутиконосцев. Природная очаговость лейшманиоза. Формы лейшманиоза.
- •91. Трихинелла. Систематическое положение, морфология, цикл развития, обоснование лабораторной диагностики, пути заражения, профилактика.
- •92. Токсоплазма. Морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики и профилактики.
- •93. Лямблии. Морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики.
- •94. Трипаносомы. Морфология, циклы развития, обоснование лабораторной диагностики, профилактика.
- •95. Многожгутиковые представители класса жгутиковых. Биология, пути заражения, патогенное значение, диагностика, профилактика заболеваний.
- •96. Диагностические признаки, систематика, биология переносчиков малярии.
- •97. Плоские черви. Характерные черты организации. Медицинское значение.
- •98. Ланцетовидный сосальщик. Систематическое положение, морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики, профилактика.
- •99. Кошачий сосальщик. Морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики и профилактики. Описторхоз – краевая патология Тюменской области.
- •100. Шистосомы. Морфология, цикл развития, обоснование методов лабораторной диагностики, профилактики
45.Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
Фотопериодизм — реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток (фотопериодами).
Под действием реакции фотопериодизма растения переходят от вегетативного роста к зацветанию. Эта особенность является проявлением адаптации растений к условиям существования, и позволяет им переходить к цветению и плодоношению в наиболее благоприятное время года. Помимо реакции на свет, известна также реакция на температурные воздействия — яровизация растений.
За восприятие фотопериодических условий у растений отвечают особые рецепторы листьев (например, фитохром).
Растения делят на длиннодневные, зацветают при непрерывной суточной освещенности более 12 часов и короткодневные, зацветают при непрерывной суточной освещенности менее 12 часов. Есть и нейтральные, для цветения им необходимо 12 часов. В умеренных широтах короткие дни весной, а длинные — в середине лета. Поэтому короткодневные цветут весной и осенью, а длиннодневные — летом.
Известно, что длина светового дня, кроме времени года, зависит от географического положения местности. Короткодневные виды живут и произрастают в основном в низких широтах, а длиннодневные – в умеренных и высоких. У видов с обширными ареалами северные особи могут отличаться по типу фотопериодизма от южных. Таким образом, тип фотопериодизма – это экологическая, а не систематическая особенность вида.
По мере повышения географической широты критическая длина дня возрастает. Например, переход в диапаузу яблоневой листовертки на широте 32° происходит при продолжительности светлого периода суток, равной 14 ч, 44° – 16 ч, 52° – 18 ч. Критическая длина дня часто служит препятствием для широтного передвижения растений и животных, для их интродукции.
Фотопериодизм растений и животных – наследственно закрепленное, генетически обусловленное свойство. Однако фотопериодическая реакция проявляется лишь при определенном воздействии других факторов среды, например в определенном интервале температур. При некотором сочетании экологических условий возможно естественное расселение видов в несвойственные им широты, несмотря на тип фотопериодизма.
Фотопериодизм известен также у животных — насекомых,рыб,птиц,млекопитающих. Реакция на длину светового дня регулирует начало брачного периода,линьки, зимнейспячкии т. д.
46. Биоритмы и возраст. Хронобиологическая трактовка тезиса «Старость и болезнь – это стеснённая в своей свободе жизнь».
Каждый возрастной период постнатального онтогенеза характеризуется неповторимой циркадианной временной организацией по всем основным биоритмологическим параметрам (МЕЗОР, амплитуда, акрофаза). Специфика циркадианной организации в онтогенезе человека показана на исследованиях параметров ряда гомеостатических систем (углеводного, липилного, белкового, энергетического и др балансов). В 1980г. Губиным Г.Д. была выдвинута концепция,согласно которой циркадианная организация живой системы, все амплитудно-фазовые отношения испытывают изменения в онтогенезе. Организм представляется в форме спирали с постепенно возрастающими ее оборотами (наращиваение амплитуд в циркадианной организации биологических процессов) с последующим,на поздних этапах онтогенеза, сокращением оборотов спирали (угасание амплитуд осцилляции), а так же идущим процессам сдвига акрофаз (гипотеза «волчка»). Циркадианная организация биологических процессов в период постнатального онтогенеза млекопитающих изменяется строго закономерно по одному из важнейших критериев - амплитуде. Закономерность: становление циркадианных ритмов на ранних этапах онтогенеза, развитие их до максимума в молодом и зрелом возрасте и последующее поступательное угасание амплитуд в старости. Если принять за 100 % архитектонику циркадианной амплитудно-фазовой характеристики зрелого возраста крыс и выразить результаты в относительных единицах планиметра, то по хроноструктуре, в частности, углеводного гомеостаза, этапы постнатального онтогенеза будут иметь следующие значения : в инфантильном возрасте 22,5, в ювенильном 28, в молодом 58, в зрелом 100, в предстарческом 27,9, в старческом 9,9. Используя такой геометрический прием выражения надежности циркадианной организации биосистем, можно констатировать, что уровень надежности хроноструктуры в зрелом возрасте превышает таковой в старости в 12,33 раза. Таким образом, наглядно иллюстрируется положение, что старость – это стесненная в своей свободе жизнь. О максимальной надежности циркадианной организации биопроцессов в зрелом возрасте свидетельствуют так же величины хронодезмов. В молодом и зрелом возрасте все изученные показатели гомеостатических систем имеют mах хронодезмы. В предстарческом и старческом возрастают процессы внутренней десинхронизации. В общем,Временная организация в зрелом возрасте характеризуются макс степени надежности, макс количества здоровья,упорядоченности и гормоничности. Исходные биоритмы быстрее восстанавливаются в молодом возрасте и медленнее в старческом.