
- •1. Днк, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.
- •3. Биоритмы. Регуляция циркадианных систем. Роль эпифиза и схя в синхронизации биоритмов. Биоритмы и алкоголь. Теория и практика.
- •1. Доказательства единства органического мира на молекулярном, клеточном и других уровнях организации всего живого. Значение теории эволюции для развития медицины.
- •3. Многожгутиковые представители класса жгутиковых. Биология, пути заражения, патогенное значение, диагностика, профилактика заболеваний.
- •3. Аскарида. Систематическое положение, морфология, цикл развития, диагностика, профилактика. Оксигенотерапия при аскаридозе.
- •3. Морфологические особенности, биология, эпидемиологическая роль комнатной мухи.
- •1. Проблема трансплантации органов и тканей. Ауто- алло и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.
- •2. Основные формы биологических связей в антропобиогеоценозах. Паразитизм как биологический феномен. Классификация паразитических форм животных.
- •3. Характеристика класса жгутиконосцев. Природная очаговость лейшманиоза.
- •1. Экспрессия генов в процессе биосинтеза белка. Геном человека.
- •2. Филогенетические связи в природе. Естественная классификация живых форм. Основные типы животного мира. Доказательства монофилии.
- •3. Общая характеристика п/т хелицероносных. Паукообразные.
- •1. Клетка как открытая система. Специализация и интеграция клеток многоклеточного организма. Происхождение многоклеточных организмов.
- •2. Биоритмы и возраст. Хронобиологическая трактовка тезиса «Старость и болезнь – это стеснённая в своей свободе жизнь».
- •3. Трихинелла. Систематическое положение, морфология, цикл развития, обоснование лабораторной диагностики, пути заражения, профилактика.
- •1. Экспрессия генов в процессе биосинтеза белков. Генная инженерия. Программа «Геном человека». Генная терапия.
- •2. Общая характеристика членистоногих. Природно-очаговые заболевания, трансмиссивные и нетрансмиссивные. Болезнь Лайма.
- •3. Токсоплазма.
- •1. Восстановительные процессы в организме. Регенерация физиологическая и репаративная.
- •2. Определение науки экологии. Среда как экологическое понятие. Факторы среды. Экосистема, биогеоценоз, антропобиоценоз. Интегральный критерий среды, компенсаторные возможности среды.
- •3. Защитные силы организма. Клеточные и гуморальные факторы. Аспекты эволюционной иммунологии. Три звена (уровня) защиты генетического гомеостаза от мутационных изменений.
- •1. Комбинативная изменчивость. Значение комбинативной изменчивости в генетическом разнообразии людей. Проявление уникальности и универсальности биологического в человеке.
- •2. Основные этапы антропогенеза (австралопитеки, архантропы, палеоантропы, неоантропы). Биологические предпосылки происхождения человека. Систематика человека.
- •3. Характеристика отряда Cyclophyllidea. Эхинококк и альвеококк. Биологическое значение двукратного почкования. Природная очаговость.
- •2. Учение академика е. Н. Павловского о природно-очаговых заболеваниях.
- •3. Диагностические признаки, биология переносчиков малярии.
- •1. Клетка. Клеточная теория. Значение теории в обосновании диалектико-материалистической концепции единства жизни. Прокариотические и эукариотические клетки. Концепция синергетики.
- •2. Эволюция биосферы. Правило экологической пирамиды. Структура пищевой цепи.
- •3. Пути морфофизиологической адаптации паразитов.
- •1. Линейное расположение генов в хромосомах. Кроссинговер.
- •2. Задачи медико-генетических консультаций.
- •3. Общая характеристика типа «Членистоногие» и его подтипов (жабродышащие, хелицероносные и трахейнодышащие). Медицинское значение классов представителей ракообразных, паукообразных и насекомых.
- •1. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.
- •2. Общие закономерности онтогенеза многоклеточных. Избирательная активность генов в развитии. Роль цитоплазмы.
- •3. Метаморфоз клещей. Эпидемиологическое значение трансовариальной и трансфазовой передачи возбудителей заболеваний. Чесоточный зудень. Лайм-боррелиоз и клещевой энцефалит.
- •2. Энергообразующие системы клетки и их характеристики.
- •3. Дифиллоботриоз – краевая патология Тюменской области.
- •1. Основные положения хромосомной теории наследственности. Кариотип и идеограмма хромосом человека. Характеристика кариотипа человека в норме.
- •2. Принципы взаимодействия паразита и хозяина на уровне особей. Пути морфофизиологической адаптации паразитов.
- •3. Важнейшие представители отряда клещей. Их эпидемиологическое значение. Трансфазовая и трансовариальная передача возбудителя.
- •1. Множественные аллели и полигенное наследование на примере человека.
- •3. Класс инфузории. Балантидий.
- •2. Понятие о биологическом виде. Реальность биологического вида. Структура вида. Популяция. Элементарные эволюционные факторы и их характеристика. Основные типы животного мира.
- •3. Гнус и миазы.
- •2. Диссимиляция.
- •3. Ланцетовидный сосальщик. Систематическое положение, морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики, профилактика.
- •1. Качественные особенности обмена веществ (динамическая устойчивость, особенности биоэнергетики, ферментативность, энтропия).
- •3. Общая характеристика типа простейших. Паразитические представители классов саркодовых и жгутиконосцев. Представители класса жгутиконосцев – возбудители природно-очаговых заболеваний.
- •1. Человек в системе природы. Специфика проявления биологического и социального в человеке.
- •2. Экспериментальное обоснование триплетного кода в опытах Ниринберга. Формы взаимодействия аллельных и неаллельных генов. Закон умножения вероятностей в генетике. Применение.
- •2. Человеческие расы. Критика расизма, евгеники, социал-дарвинизма. Позитивные аспекты евгеники.
- •3. Характеристика типа круглых червей. Аскарида: морфология, цикл развития, пути заражения, патогенные действия.
- •1. Мейоз. Оплодотворение. Партеногенез. Кроссинговер и его значение для доказательства линейного расположения генов в хромосомах. Половой диморфизм человека. Генетические и другие аспекты.
- •2. Среда как эволюционное понятие. Решение вопроса биологической целесообразности. Проблема наследования благоприобретенных признаков в истории эволюционного учения.
- •1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медико-генетические аспекты семьи.
- •2. Характеристика споровиков. Систематика и характеристика 4-х видов малярийного плазмодия, бесполая часть цикла возбудителя малярии. Борьба с малярией.
- •2. Митоз.
- •3. Систематическое положение, морфологическая диагностика и эпидемиологическое значение вшей и блох.
- •1. Кодирование и реализация биологической информации в клетке. Кодовая система днк. Кодовая система белка.
- •2. Биологический возраст.
- •3. Общая характеристика, систематика класса насекомых. Насекомые – переносчики возбудителей инфекционных заболеваний. Строение, цикл развития, меры борьбы.
- •2. Ассимиляция в гетеротрофной клетке. Её фазы.
- •3. Характеристика круглых червей. Острица.
- •1. Использование молекулярной биологии в медицинских целях. Генная терапия. Ее методы. Проблемы биотехнологии в медицине и промышленности.
- •2. Биосфера как естественноисторическая система. Современная концепция биосферы.
- •3. Общая характеристика группы червей. Систематика типов и классов имеющих медицинское значение.
- •1. Классификация генов: гены структурные, синтеза рнк, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).
- •2. Теория эволюции ч. Дарвина. Значение естественного отбора в формировании и эволюции генетического механизма суточной ритмичности.
- •3. Организм человека как среда обитания. Формы паразитизма. Паразитарные системы (дву- и трёхчленные; простые и сложные). Примеры
- •1. Менделирующие признаки человека. Статистический характер менделевских закономерностей.
- •2. Экология – наука о «нашем доме». Экологические факторы (классификация, эволюция и взаимосвязь). Экологическая валентность.
- •1. Понятие о гомеостазе. Здоровье и биологические ритмы. Хронобиология и хрономедицина. Биологический возраст. Факторы определяющие здоровье. Уравнение Гомперца-Мейкема.
- •2. Болезнь Дауна и её причины.
- •3. Морфологические особенности семейства иксодовых клещей. Их эпидемиологическая роль. Болезнь Лайма. Боррелиоз.
- •1. Клетка как открытая система. Организация потока веществ. Синтез белка. Мультимерная организация белка.
- •2. Вопросы экологической паразитологии. Популяционный уровень взаимодействия паразитов и хозяев.
- •3. Структура природного очага. Трипаносомоз.
- •1. Цели и задачи программы «Геном человека». Генная инженерия, её значение для медицины и промышленности. Методы генной инженерии.
- •2. Фотопериодизм. Эволюционные аспекты фотопериодизма. Значение света, темноты, их продолжительности и чередования фаз для жизнедеятельности.
- •1. Изменчивость. Формы изменчивости. Модификационная изменчивость. Норма реакции. Фенотип. Адаптивный характер модификаций.
- •2. Гликолиз и тканевое дыхание. Сущность, биологическое значение. Энергообразующие системы клетки. Окислительное фосфорилирование. Роль.
- •3. Определение старения. Периодизация жизни человека. Биология продолжительности жизни. Теории старения (авторы, суть теорий).
- •1. Предмет, задачи и методы генетики. Наследственность и изменчивость. Понятие о генетическом материале. Роль ядра и цитоплазмы в наследственности и изменчивости.
- •2. Биотические факторы. Цепи питания. Правило экологической пирамиды. Концепция биогеоценоза. Экологическая сукцессия и климакс.
- •3. Основные формы биотических связей в антропобиоценозах. Паразитизм как биологический феномен. Карликовый цепень. Биологические основы аутоинвазии.
- •Вопрос 3. Учение академика е.Н. Павловского о природно-очаговых заболеваниях.
- •1. Формы изменчивости: модификационная, комбинативная, мутационная и их значение в онтогенезе и эволюции.
- •2. Биологический возраст. Концепция «Волчка». Видовая продолжительность жизни человека. Клиническая и биологическая смерть. Реанимация.
- •3. Типы финн в классе ленточных червей. Цикл развития невооружённого цепня.
- •1. Предмет, задачи, методы генетики. Этапы развития генетики.
- •2. Органический мир как результат процесса эволюции. Возникновение и развитие жизни на Земле. Химический, предбиологический и социальный этапы. Фотопериодизм и суточные биоритмы.
- •3. Жизненные циклы паразитов. Чередование поколений и феномен смены хозяев. Промежуточные и основные хозяева на примере ланцетовидной двуустки.
- •1. Диалектико-материалистическое решение вопроса сущности жизни (ф. Энгельс). Эволюционно-обусловленные уровни организации жизни. Качественные особенности обмена веществ.
- •2. Центральная догма биологии. Геном человека. Генетическая инженерия.
- •3. Цикл развития малярийного плазмодия и эхинококка. Систематика.
- •1. Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
- •3. Печёночный сосальщик. Систематическое положение, цикл развития, пути заражения, обоснование методов лабораторной диагностики и профилактики.
- •1. Количественная и качественная специфика проявления генов в признаках (пенетрантность, экспрессивность, плейотропия, полигенность). Генокопии, фенокопии. Место н. В. Тимофеева-Ресовского в генетике.
- •2. Положение вида Homo sapiens в системе животного мира. Качественные особенности человека. Соотношение биологических и социальных факторов в становлении человека.
- •3. Особенности цикла развития карликового цепня и свиного солитёра. Цистицеркоз.
- •2. Живое вещество биосферы. Количественная и качественная характеристика. Роль в природе планеты. Эволюция биосферы.
- •3. Описторхоз – краевая патология Тюменской области.
- •2. Сцепленное наследование признака. Сцепленное с полом наследственность. Наследование признаков, контролируемых генами х и у хромосомами человека. Полигенное наследование.
- •3. Широкий лентец, систематика, морфология, цикл развития.
- •1. Основные методы изучения генетики человека (генеалогический, онтогенетический, цитогенетический, близнецовый, популяционный). Значение генетики для биологии и медицины.
- •2. Клетка как открытая система. Организация потока энергии. Второй закон термодинамики. Энтропия. Диссимиляция. Гликолиз и тканевое дыхание. Окислительное фосфорилирование. Атф. Митохондрии.
- •3. Биогенетический закон. Индивидуальное и историческое развитие.
- •1. Роль наследственности и среды в онтогенезе. Критические периоды развития. Тератогенные факторы среды. Близнецовый метод.
- •2. Размножение. Эволюция размножения. Половой процесс как механизм обмена наследственной информации внутри вида.
- •3. Биологические ритмы. Значение биологических ритмов для медицины.
- •2. Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Проблема предрасположенности к заболеваниям. Факторы риска.
- •3. Характеристика гельминтов – паразитов человека Тюменской области.
- •2. Здоровье, биологические ритмы, энтропия.
- •3. Экологические проблемы Тюмени и Тюменской области и пути их решения.
- •2. Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста. Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.
- •3. Цикл развития широкого лентеца. Нарисуйте в натуральную величину личинку, которой заражается человек.
- •1. Генетический полиморфизм. Классификация. Генетический и мутационный груз и их биологическая сущность.
- •2. Окислительное фосфорилирование. Свободная энергия. Атф. Митохондрии. Первичная и вторичная теплота.
- •3. Как Вы понимаете тезис «Паразит бережёт своего хозяина»?
- •1. Биоритмы и возраст. Хронобиологическая трактовка тезиса «Старость и болезнь – это стеснённая в своей свободе жизнь». Мелатонин и возраст. Биологическое значение.
- •3. Биологические основы цистицеркоза при тениозе.
- •1. Гипотеза Жакоба и Моно о внутриклеточной регуляции синтеза белка.
- •3. Цикл развития и природная очаговость лейшманиоза и африканской сонной болезни.
- •1. Мейоз. Фазы мейоза. Биологическое значение и роль в комбинативной изменчивости.
- •2. Понятие о геронтологии и гериатрии. Индивидуальная и видовая продолжительность жизни человека. Теории старения.
- •1. Генные мутации. Сущность и механизм возникновения молекулярно-наследственных болезней человека (фенилкетонурия, серповидно-клеточная анемия и др.)
- •2. Диссимиляция.
- •3. Аутэкологические понятия и законы. Пути адаптации организма к окружающей среде (толерантный и резистентный пути). Правило оптимума и минимума.
- •1. Гипотеза Жакоба и Моно о внутриклеточной регуляции синтеза белка.
- •2. Малярия как типичный пример антропонозного заболевания. Цикл развития, пути заражения, основы профилактики.
- •3. Демэкология. Виды популяций. Типы пространственного распределения особей в популяциях (равномерный, диффузный, агрегированный). Экологическая дифференциация человечества.
- •1. Кариотип и идеограмма. Строение и функция хромосом. Правила хромосом.
- •2. Эмбриональная индукция. Дифференциация и интеграция в развитии. Молекулярно-генетические механизмы дифференцировки.
- •2. Генная терапия. Перспективы, трудности и методы их преодоления. Виды генной терапии.
- •1. Сущность молекулярных наследственных болезней человека (фенилкетонурия, серповидноклеточная анемия, болезнь Вильсона, муковисцидоз и др.). Возможность их профилактики и лечения.
- •3. Систематика, характеристика основных видов возбудителей малярии. Природная очаговость и цикл развития. Основные меры профилактики этого заболевания.
- •1. Организм как открытая система в пространстве и времени. II закон термодинамики для открытых систем. Учение о самоорганизации. Синергетика.
- •2. Сущность генетического гомеостаза в свете эволюции специфического иммунитета и многоклеточности в филогенезе.
- •3. Проблема коэволюции биосферы и человека. Ноосфера.
1. Качественные особенности обмена веществ (динамическая устойчивость, особенности биоэнергетики, ферментативность, энтропия).
Обмен веществ (метаболизм), совокупность химических процессов, обеспечивающих жизнедеятельность организма.
Обмен веществ является одним из основных свойств живой материи, необходимым условием жизни. В процессе обмена веществ происходит как расходование свободной энергии, так и накопление ее в сложных органических соединениях или в форме электрических зарядов на поверхности клеточных мембран.
Принципиальное отличие обмена веществ в живом организме от обмена в неживых системах заключается в различной направленности термодинамических процессов. В результате обмена в неживой природе происходит разрушение вещества, с уменьшением количества свободной энергии. В живом организме в результате обмена веществ накапливается энергия, за счет которой осуществляются пластические процессы, рост и развитие организма.
Физические и химические процессы в живом организме не теряют своего внутреннего качественного содержания, но существенно изменяются в направлении, определяемом законами развития живой материи. Накопление свободной энергии стало возможно только в живом организме. Эта качественно новая форма обмена энергии появилась с момента выделения живого из неживого.
Новая форма обмена с антиэнтропийной направленностью явилась предпосылкой возникновения жизни, определила способность живого противостоять разрушительному влиянию внешней среды. Удержание этого антиэнтропийного состояния возможно только на основе постоянного самообновления, обмена.
В живых организмах любой процесс сопровождается передачей энергии. Энергию определяют как способность совершать работу. Специальный раздел физики, который изучает свойства и превращения энергии в различных системах, называется термодинамикой. Под термодинамической системой понимают совокупность объектов, условно выделенных из окружающего пространства.
Термодинамические системы разделяют на изолированные, закрытые и открытые. Изолированными называют системы, энергия и масса которых не изменяется, т.е. они не обмениваются с окружающей средой ни веществом, ни энергией. Закрытые системы обмениваются с окружающей средой энергией, но не веществом, поэтому их масса остается постоянной.
Открытыми системами называют системы, обменивающиеся с окружающей средой веществом и энергией. С точки зрения термодинамики живые организмы относятся к открытым системам, так как главное условие их существования - непрерывный обмен веществ и энергии. В основе процессов жизнедеятельности лежат реакции атомов и молекул, протекающие в соответствии с теми же фундаментальными законами, которые управляют такими же реакциями вне организма. Согласно первому закону термодинамики энергия не исчезает и не возникает вновь, а лишь переходит из одной формы в другую.
Второй закон термодинамики утверждает, что вся энергия, в конце концов, переходит в тепловую энергию, и организация материи становится полностью неупорядоченной. В более строгой форме этот закон формулируется так: энтропия замкнутой системы может только возрастать, а количество полезной энергии (т.е. той, с помощью которой может быть совершена работа) внутри системы может лишь убывать. Под энтропией понимают степень неупорядоченности системы.
Неизбежная тенденция к возрастанию энтропии, сопровождаемая столь же неизбежным превращением полезной химической энергии в бесполезную тепловую, заставляет живые системы захватывать все новые порции энергии (пищи), чтобы поддерживать свое структурное и функциональное состояние. Фактически способность извлекать полезную энергию из окружающей среды является одним из основных свойств, которые отличают живые системы от неживых, т.е. непрерывно идущий обмен веществ и энергии является одним из основных признаков живых существ. Чтобы противостоять увеличению энтропии, поддерживать свою структуру и функции, живые существа должны получать энергию в доступной для них форме из окружающей среды и возвращать в среду эквивалентное количество энергии в форме, менее пригодной для дальнейшего использования.
Особенности биоэнергетики.
С позиций термодинамикиметаболизмпредставляет собой совокупность процессов, в которойреакции, потребляющие энергию из внешней среды , сопрягаются с энергодающимиреакциями, что позволяет живым существам оказывать постоянное сопротивление нарастаниюэнтропии. Выяснение биохимических механизмов, приводящих к генерации различных форм биологической энергии, является предметомбиоэнергетики. Источником энергии служатреакции, в ходе которых соединения, содержащиеатомыуглеродав высоковосстановленном состоянии, подвергаютсяокислению, а специальные дыхательные переносчики присоединяютпротоныиэлектроны(восстанавливаются) и в таком виде транспортируютатомыводородакдыхательной цепи.
2. Генетика и теория эволюции Ч. Дарвина. Взаимоотношения эволюционного процесса и отбора в популяциях (С. С. Четвериков). Закон Харди-Вайнберга. Содержательные и математические выражения. Использование для расчёта частот гетерозиготного носительства аллелей у людей. Популяция и её генофонд (аллелофонд).
Генетика (от греч. génesis — происхождение) — наука о законах наследственности и изменчивости Предложен в 1906 г. английским биологом Бейтсоном.
Задачи генетики: 1. В области с/х. - выведение новых сортов растений и новых пород животных, а также усовершенствование существующих 2. Медицинская генетика - разработка методов диагностики наследственных заболеваний, разработка их профилактики 3. Генная инженерия
Предмет и задачи генетики человека. Генетика человека, или медицинская генетика, изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни.
Основные положения эволюционного учения Ч. Дарвина
Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.
Сущность эволюционного учения заключается в следующих основных положениях:
1. Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.
2. Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.
3. В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.
4. Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.
Главная заслуга Дарвина в том, что он установил механизм эволюции, объясняющий как многообразие живых существ, так и их изумительную целесообразность, приспособленность к условиям существования. Этот механизм — постепенный естественный отбор случайных ненаправленных наследственных изменений.
Взаимоотношения эволюционного процесса и отбора в популяциях (С. С. Четвериков)
Популяционные волны – изменение численности особей в популяции. С.С. Четвериков назвал их волнами жизни. Колебания численности особей могут привести к временному изменению их ареала. В результате организмы оказываются в нетипичных условиях, что может повлечет за собой усилении мутационного процесса. Рост численности популяций приводит к их слиянию и обмену генофондом. В небольших популяциях большую роль играет дрейф генов. Случайное повышение концентрации некоторых мутаций приводит дает новый материал для отбора. Таким образом, популяционные волны наряду с мутационным процессом являются поставщиками элементарного эволюционного материала.
Закон Харди-Вайнберга:
Закон Харди— Вайнберга — это законпопуляционной генетики— впопуляциибесконечно большого размера, в которой не действуетотбор, не идетмутационныйпроцесс, отсутствует обмен особями с другими популяциями, не происходитдрейф генов, все скрещивания случайны — частотыгенотиповпо какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствоватьуравнению:
p² + 2pq + q² = 1
Где p² — доля гомозигот по одному из аллелей; p — частота этого аллеля; q² — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот
Использование формул закона Харди-Вайнберга позволяет рассчитать генетический состав популяции в данное время и определить возможные тенденции его изменений, можно вычислить насыщенность популяции определенными генами, рассчитать частоты гетерозиготного носительства аллелей у людей. При медико-генетических исследованиях популяций расчеты по закону Харди-Вайнберга нашли широкое применение. Но в тех случаях, когда популяции ограничены по численности, закон Харди-Вайнберга не действует, так как основан на статистических закономерностях, которые не играют роли в случае малых чисел.
Практическое значение закона Харди–Вайнберга
1. В здравоохранении – позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребенка.
2. В селекции – позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).
3. В экологии – позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчетных величин можно установить эффект действия экологических факторов
Элементарной единицей эволюции является популяция (каждая популяция обладает собственной эволюционной судьбой).
Популяция – это…
– самовоспроизводящаяся группировка особей одного вида,
– более или менее изолированная от других подобных группировок,
– населяющая определенный ареал в течение длительного ряда поколений,
– образующая собственную генетическую систему,
– формирующая собственную экологическую нишу
Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы и др.). Для описания генетической структуры популяций используются термины «аллелофонд» и «генофонд».
Аллелофонд популяции – это совокупность аллелей в популяции.
В простейшем случае рассматриваемый признак определяется двумя аллелями одного гена: А и а. Такое определение признака называется моногенным диаллельным. В этом случае структура аллелофонда описывается уравнением: pA+qa=1.
В этом уравнении символом pA обозначается относительная частота аллеля А, символом qa – относительная частота аллеля а.