
- •Балтийский государственный технический университет «военмех» им. Д.Ф. Устинова
- •В.Ю. Лавров Введение в теорию механизмов и машин Учебное пособие
- •Содержание
- •Введение
- •1. Структурный анализ и синтез рычажных механизмов
- •1.1. Основные определения
- •1.2. Число степеней свободы механизма
- •1.3. Структурные группы
- •1.4. Структурный синтез механизмов с помощью групп Ассура
- •1.5. Диагностика наличия пассивных связей
- •1.6. Элементы метрического синтеза рычажных механизмов
- •Математически это можно выразить следующим образом. Если выполняются условия:
- •Если выполняются условия:
- •2. Кинематический анализ рычажных механизмов
- •2.1. Постановка задачи
- •2.2. Кинематика входных механизмов
- •2.2.1. Кривошип
- •2.2.2. Ползун
- •2.2.3. Качающийся ползун
- •2.3. Аналитические зависимости кинематического анализа для структурных групп, связанных со стойкой
- •2.3.1. Трёхшарнирная структурная группа
- •2.3.2. Структурная группа "шатун - ползун"
- •Уравнение замкнутого векторного контура:
- •2.3.3. Кулисные структурные группы
- •2.3.4. Структурная группа "шарнир – ползун – ползун"
- •2.3.5. Структурная группа "ползун – шарнир – ползун"
- •2.4. Метод преобразования координат
- •2.5. Общая последовательность кинематического анализа
- •2.6. Передаточные функции, передаточное отношение
- •2.6.1. Передаточная функция
- •2.6.2. Передаточное отношение
- •2.7. Графо-аналитический метод планов2
- •3. Кулачковые механизмы
- •3.1. Классификация
- •3.2. Основные геометрические параметры кулачковых механизмов
- •3.3. Фазы работы кулачковых механизмов. Фазовые и конструктивные углы
- •3.4. Выбор закона движения выходного звена
- •3.4.1. Позиционные механизмы
- •3.4.2. Функциональные механизмы
- •3.5. Угол давления в кулачковых механизмах
- •3.6. Связь между углом давления и основными геометрическими параметрами кулачкового механизма
- •3.6.1. Механизм с толкателем центрального типа
- •Для надежного определения rOmin по формуле (3.7) rOmin I должны быть вычислены с достаточно мелким шагом по углу поворота кулачка.
- •3.6.2. Механизм с толкателем при наличии эксцентриситета
- •3.7. Определение основных геометрических параметров
- •3.7.1. Механизмы с толкателем и роликом или с заостренным толкателем
- •3.7.2. Механизмы с плоским толкателем
- •3.7.3. Механизмы с коромыслом и роликом
- •3.7.4. Механизмы с плоским коромыслом
- •3.8. Расчет профиля кулачка
- •3.8.1. Механизмы с толкателем и роликом или с заостренным толкателем
- •3.8.2. Механизмы с плоским толкателем
- •3.8.3. Механизмы с коромыслом и роликом
- •3.8.4. Определение радиуса ролика
- •4. Зубчатые механизмы
- •4.1. Классификация Зубчатые – это, наверное, самый широко распространенный класс механизмов. Большое разнообразие этих механизмов можно классифицировать следующим образом.
- •4.2. Основная теорема зацепления
- •4.3. Основные параметры эвольвентного зацепления
- •4.4. Теоретический и рабочий участок линии зацепления, зоны одно- и двупарного зацепления, коэффициент перекрытия
- •4.5. Методы изготовления зубчатых колес
- •4.5.2. Метод обкатки
- •Тогда ( 4.11 )
- •4.7.2.2. Гиперболоидные зубчатые передачи
- •Винтовая передача
- •Червячная передача
- •4.8. Кинематический анализ зубчатых механизмов
- •4.8.1. Рядные механизмы
- •4.8.2. Механизмы с промежуточными колесами
- •4.8.3. Планетарные зубчатые механизмы
- •4.8.4. Волновые зубчатые механизмы
- •4.8.5. Определение передаточных отношений сложных зубчатых механизмов
- •4.9. Силовой расчет зубчатых механизмов
- •4.9.1. Расчет крутящих моментов на валах
- •4.9.2. Усилия в зацеплениях
- •4.9.3. Определение реакций в опорах валов
- •4.10. Кпд зубчатых механизмов
- •4.10.1. Кпд зубчатых механизмов с неподвижными осями колес
- •4.10.2. Кпд планетарных зубчатых механизмов
- •4.11. Дифференциальные зубчатые механизмы
- •5. Силовой расчет рычажных механизмов
- •5.1. Постановка задачи
- •5.2. Общий порядок силового расчета
- •5.3. Внешние силы
- •5.4. Определение реакций в кинематических парах структурных групп
- •5.4.1. Аналитическое решение
- •5.4.1.1. Трёхшарнирная структурная группа
- •5.4.1.2. Структурная группа "шатун – ползун"
- •5.4.1.3. Кулисные структурные группы
- •5.4.1.4. Структурная группа типа "шарнир – ползун – ползун"
- •5.4.1.5. Структурная группа "ползун – шарнир – ползун"
- •5.4.2. Графо-аналитическое решение задачи силового расчёта
- •5.5. Силовой расчет кривошипа
- •5.5.1. Одноколенный кривошип
- •5.5.1.1. Силовой расчет кривошипа при передаче крутящего момента
- •5.5.1.2. Силовой расчет кривошипа при передаче крутящего момента
- •5.5.2. Двухколенный кривошип
- •5.5.2.1. Крутящий момент на кривошип передаётся через зубчатую или фрикционную пару
- •5.5.2.2. Крутящий момент на кривошип передается через планетарный или волновой механизм
- •6. Уравновешивание механизмов
- •6.1. Постановка задач
- •6.2. Уравновешивание роторов
- •6.2.1. Уравновешивание роторов при известном расположении неуравновешенных масс
- •6.2.2. Уравновешивание роторов при неизвестном расположении неуравновешенных масс
- •Производят второй разгон ротора, дают выбег и замеряют амплитуду резонансных колебаний. Обозначим ее: a1.
- •7.2. Метод приведения
- •7.3. Приведение сил и моментов
- •7.4. Приведение масс и моментов инерции
- •7.5. Уравнение движения
- •7.6. Анализ уравнения движения
3.7.4. Механизмы с плоским коромыслом
Схема такого механизма представлена на рис. 3.1г. Для этих механизмов основными геометрическими параметрами являются пара (Ro, L), где R0 – радиус базовой окружности кулачка, L – межцентровое расстояние (между центром вращения кулачка и центром качания коромысла). Часто величина L для этих механизмов задается конструктивно, и в этом случае определению фактически подлежит только R0.
Также как для механизмов с плоским толкателем здесь основные геометрические параметры определяют из условия выпуклости кулачка. Однако в данном случае нет возможности определить их так, как мы это делали выше. Объясняется это двумя причинами. В отличие от механизмов с плоским толкателем точка касания кулачка и коромысла имеет составляющую кориолисова ускорения и здесь не удается получить столь удобную зависимость для R0 min как формула (3.14). Но даже если бы и удалось ее получить, то такой диаграммы, какая представлена на рис. 3.11в для определения R0 min для механизма с плоским коромыслом построить невозможно, т.к. точка контакта коромысла с кулачком имеет сложную траекторию, которая может быть рассчитана только при известном R0.
Преодолеть этот “заколдованный круг” можно с помощью итеративного алгоритма, представленного на рис. 3.14. Сначала по упрощенной методике, рассмотренной ниже, определяется, может быть даже, довольно грубое значение R0 min в первом приближении. Для этого значения R0 рассчитывается профиль кулачка. Производится контроль его выпуклости, по результатам которого организуется следующая итерация.
Рассмотрим
определение
R0
min в
первом приближении.
Методика строится по аналогии с
определением R0
min для
механизма с плоским толкателем,
рассмотренным в п. 3.7.2. Расчетная схема
представлена на рис. 3.15а.
Пренебрегая кориолисовым ускорением и изменением рабочей длины коромысла lк, строим график повернутого на –90о аналога ускорения конца коромысла lк.’’(). Проводя через максимальное по величине значение на отрицательной ветви этой функции линию - под углом 45о к оси коромысла, на линии ОА находим искомое приближение
R~0 min = lк ’’max – lк i , ( 3.27 )
где i – угол поворота коромысла, при котором достигается ’’max .
Но поскольку мы ищем всего лишь начальное значение для запуска алгоритма на рис. 3.14, то можно поступить и еще проще, как это показано на рис. 3.15б и за начальное приближение принять максимальное по величине значение аналога ускорения конца коромысла на отрицательной ветви функции lк. ’’():
R~0 min = lк ’’max . ( 3.28 )
Алгоритм поиска R0 min устойчивый и сходится даже при большой разнице между R~0 min и фактическим R0 min.
3.8. Расчет профиля кулачка
Профилирование кулачка является заключительной операцией проектирования кулачкового механизма. К моменту её начала должны быть выполнены описанные выше расчёты в соответствии с типом механизма.
Здесь
мы рассмотрим аналитические методы
расчёта профиля.