
- •А.Д. Ходалевич
- •Векторы и координаты Понятие вектора
- •Линейные операции над векторами.
- •Проекции.
- •Скалярное произведение векторов.
- •Векторное произведение двух векторов.
- •Свойства векторного произведения.
- •Смешанное произведение векторов.
- •Свойства смешанного произведения.
- •Линейная зависимость векторов.
- •Координаты на прямой.
- •Координаты на плоскости.
- •Координаты в пространстве.
- •Скалярное произведение векторов в координатной форме.
- •Определители второго и третьего порядков
- •Векторное произведение векторов в координатной форме.
- •Смешанное произведение векторов в координатной форме.
- •Полярные координаты.
- •Прямоугольные координаты на плоскости.
- •Прямая на плоскости. Прямая на плоскости
- •Общее уравнение прямой. Уравнение прямой в отрезках.
- •Параметрическое и каноническое уравнения прямой. Уравнение прямой, проходящей через две заданные точки.
- •Пучок прямых
- •Условия параллельности и перпендикулярности двух прямых
- •Угол между двумя прямыми
- •Расстояние от точки до прямой
- •Плоскость Общее уравнение плоскости
- •Уравнение плоскости, проходящей через три заданные точки
- •Угол между двумя плоскостями
- •Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве Уравнение прямой в пространстве
- •Взаимное расположение двух прямых в пространстве
- •Расстояние от точки до прямой в пространстве
- •Гипербола
- •Директрисы эллипса и гиперболы.
- •Фокальный параметр эллипса и гиперболы
- •Полярное уравнение эллипса, гиперболы, параболы
- •Классификация кривых второго порядка (квп)
- •Свойства определителей второго и третьего порядков
- •Общая теория кривых второго порядка
- •Инварианты кривой второго порядка
- •Линии параболического типа
- •Поверхности второго порядка Основная теорема о поверхностях второго порядка
- •Цилиндрические поверхности
- •Конические поверхности
- •Поверхности вращения
- •«Аналитическая геометрия» Тексты лекций
- •246019, Г. Гомель, ул. Советская, 104
- •246019, Г. Гомель, ул. Советская, 104
Свойства определителей второго и третьего порядков
Будем рассматривать в дальнейшем только определители 3-го порядка. Для определителей 2-го порядка все свойства аналогичны.
1. Определитель не изменится, если его строки поменять местами с соответствующими столбцами (операция транспонирования), т.е.
.
Действительно,
Δ=а1b2с3+b1с2а3+с1а2b3—с1b2а3—а1с2b3—b1a2c3. (*)
Δ'=а1b2с3+c1a2b3+b1с2а3+с1b2а3+а1с2b3+b1а2с3 . (**)
Сравнивая равенства (*) и (**), получаем, что Δ=Δ'.
2. При перестановке 2-х строк (столбцов) местами определитель меняет знак на противоположный.
Доказательство проводится проверкой.
3. Если определитель имеет 2 одинаковые строки (столбца), то он равен нулю.
Действительно, при перестановке двух одинаковых строк, определитель Δ, очевидно не изменится. С другой стороны, по свойству 2 он изменит знак на противоположный. Следовательно, Δ= -Δ, т.е. Δ=О.
4. При умножении любой строки (столбца) определителя Δ на некоторое число λ, определитель умножается на это число, то есть, например,
.
Доказательство
следует из того факта, что вычисляя
определитель
по правилу треугольника, получим, что
каждое слагаемое содержит множитель
.
Вынося этот множитель за скобку, получим
в скобке определитель Δ.
5. Если элементы 2-х строк (столбцов) определителя пропорциональны, то определитель равен нулю.
Пусть
Тогда по свойству 4,
т.е. по свойству 3 Δ1 = 0.
6. Если элементы какой-либо строки (столбца) определителя представляют собой сумму 2-х слагаемых, то данный определитель равен сумме соответствующих определителей.
Пусть
Тогда
=
7. (Основное). Если к элементам некоторой строки (столбца) определителя прибавить соответствующие элементы другой строки (столбца), умноженные на некоторое число, то величина определителя не изменится.
Итак, например,
Доказательство следует из последовательного свойств 6 и 5.
8. (О разложении определителя по элементам i-й строки или j-го столбца).
Тогда минором элемента aij определителя Δ называется определитель Mij полученный из данного, вычеркиванием строки и столбца, на пересечении которых стоит элемент аij.
Имеет место следующее равенство:
Δ=(-1)i+1ai1Mi1+(-1)i+2ai2Mi2+(-1)i+3ai3Mi3 (*)
(разложение по элементам i-й строки.)
Доказательство. Если i=2, то поменяем местами 2-ю и 1-ю строки. Получаем определитель Δ1,равный —Δ (свойство 2).
Если i=3, то поменяем вначале 3-ю строку со 2-й, а затем
полученную вторую с первой. Получим определитель Δ2, равный
Δ(свойство 2). Итак,
Аналогично,
.
Замечание. При доказательстве разложения по элементам i-го столбца, предварительно протранспонируем определитель.
Общая теория кривых второго порядка
Удобно будет рассматривать уравнение кривой второго порядка
в следующем виде:
(1)
Сформулируем признаки, позволяющие узнать тип линии по ее уравнению (1).
Введем некоторые определения.
Группу слагаемых a11x2+2а21xy+а22у2 назовем группой старших членов. Группу слагаемых 2а13х+2а23у+а33 назовем линейной частью уравнения (1).
Коэффициенты а11, a12, а22 назовем коэффициентами группы старших членов или старшими коэффициентами, а коэффициенты а13, а23, а33 — коэффициентами линейной части или линейными коэффициентами . Отметим, что коэффициент а33 также называется свободным членом уравнения (1).
Осуществим параллельный перенос системы координат ОХY вточку 0'(х0,у0), Тогда, как известно, х=х'+х0, у=у'+у0 и в новой системе координат уравнение (1) примет вид:
Обозначим коэффициенты при степенях неизвестных в уравнении (*) следующим образом:
(2)
Тогда уравнение (*) примет вид:
(3)
Вывод: при параллельном переносе системы координат, коэффициенты группы старших членов не изменяются, а коэффициенты линейной части изменяются по формулам (2).
Применим формулы поворота системы ОХУ на угол φ т.е.
х=х'соsφ-y'sinφ;
y=x'sinφ+y'cosφ;
Получим:
Тогда в новой системе координат, уравнение (1) примет вид:
где
,
т.е.
a'13=a13cosφ+a23cosφ
a'23=a23cosφ-a13sinφ (4)
a'33=a33
Вывод: старшие коэффициенты а'11, а'12 и а'22 , выражаются только через угол φ старшие коэффициенты а11, а12 и а22. Коэффициенты а'13 и а'23 выражаются только через угол φ и коэффициенты а13, а23. Коэффициенты а'33 и а33 равны.
Для упрощения равенств (4) введем следующие обозначения:
.
Тогда
,
если
А0
. Введем угол α, где
,
Если же А = 0, то α = 0 и в этом случае a12=(1/2)(а11—а22).
Введем также угол β, считая
,
,
если
С0
. Если же С=0, т.е. а13=а23=0,
то β=0 .
Тогда выражения (1.30) перепишутся в виде:
a'11=Азin(2φ+α)+В; а'12=Асоs(2φ+α);
a'22=—Азin(2φ+α)+В; a'13=Csin(φ+β); (5)
a'23= Ссоз(φ+β); а'33=а33.
Отметим, что величины А, В, С и углы α, β не зависят от φ.