
- •А.Д. Ходалевич
- •Векторы и координаты Понятие вектора
- •Линейные операции над векторами.
- •Проекции.
- •Скалярное произведение векторов.
- •Векторное произведение двух векторов.
- •Свойства векторного произведения.
- •Смешанное произведение векторов.
- •Свойства смешанного произведения.
- •Линейная зависимость векторов.
- •Координаты на прямой.
- •Координаты на плоскости.
- •Координаты в пространстве.
- •Скалярное произведение векторов в координатной форме.
- •Определители второго и третьего порядков
- •Векторное произведение векторов в координатной форме.
- •Смешанное произведение векторов в координатной форме.
- •Полярные координаты.
- •Прямоугольные координаты на плоскости.
- •Прямая на плоскости. Прямая на плоскости
- •Общее уравнение прямой. Уравнение прямой в отрезках.
- •Параметрическое и каноническое уравнения прямой. Уравнение прямой, проходящей через две заданные точки.
- •Пучок прямых
- •Условия параллельности и перпендикулярности двух прямых
- •Угол между двумя прямыми
- •Расстояние от точки до прямой
- •Плоскость Общее уравнение плоскости
- •Уравнение плоскости, проходящей через три заданные точки
- •Угол между двумя плоскостями
- •Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве Уравнение прямой в пространстве
- •Взаимное расположение двух прямых в пространстве
- •Расстояние от точки до прямой в пространстве
- •Гипербола
- •Директрисы эллипса и гиперболы.
- •Фокальный параметр эллипса и гиперболы
- •Полярное уравнение эллипса, гиперболы, параболы
- •Классификация кривых второго порядка (квп)
- •Свойства определителей второго и третьего порядков
- •Общая теория кривых второго порядка
- •Инварианты кривой второго порядка
- •Линии параболического типа
- •Поверхности второго порядка Основная теорема о поверхностях второго порядка
- •Цилиндрические поверхности
- •Конические поверхности
- •Поверхности вращения
- •«Аналитическая геометрия» Тексты лекций
- •246019, Г. Гомель, ул. Советская, 104
- •246019, Г. Гомель, ул. Советская, 104
Инварианты кривой второго порядка
Инвариантом уравнения (1) относительно преобразования системы координат ОХУ называется такая функция
f(а11, а12, a22, a13, а23, а33),
которая не меняется при переходе к новой системе координат 0'Х'У'. Таким образом, если f — инвариант, то f(a11,...а33) = f(a'11...а'33).
Теорема. Величины
(6)
являются инвариантами уравнения (1) линии второго порядка
относительно преобразований декартовой системы координат.
Доказательство проведем вначале для преобразования параллельного переноса, а затем для преобразования поворота.
Инвариантность I1 и I2 следует из формул (2). Заметим, что из этих формул также следует, что
(7)
Тогда в новой системе координат O’X’Y’
Вычтем из 3-ей строки 1-ю, умноженную на x0, и затем вторую,
умноженную на у0. Тогда
Теперь из 3-ro столбца вычтем 1-й, умноженный на x0 и второй, умноженный на y0. Получим, что I'3=I3.
Рассмотрим теперь преобразование поворота
Разложим I'3 по элементам 3-го столбца. Получим:
=
(8)
Распишем каждое из 3-х слагаемых в выражении (1.34), пользуясь формулами (1.31).
(9)
(10)
(11)
Следовательно, из (8) следует, что
(12)
Величины А, В, С, углы α, β и I2 не зависят от угла φ. Значит, при любом повороте системы координат, выражение в правой части (12) не изменяется. С другой стороны, при φ=О, I'3=I3. Это и доказывает инвариантность I3. Теорема доказана.
Определим теперь тип линии в зависимости от знаков инвариантов I1, I2 и I3.
Будем говорить, что
при I2>О, уравнение (1) задает линию эллиптического типа;
при I2<О, уравнение (1) задает линии гиперболического типа;
при I2=О, уравнение (1) задает линии параболического типа.
При параллельном переносе можно попытаться добиться того,
чтобы в уравнении (3) отсутствовали члены 2а'13х' и 2а'23y'. Из формул (2) следует, что это возможно только в том случае, если система
(13)
имеет решение.
Уравнения (13) называются уравнениями центра линии второго порядка. Если х0, у0 — решение (13), то точка 0'(х0,у0) — центр линии. Если линия имеет центр, то в результате параллельного переноса начала системы координат в точку 0'(х0,у0) уравнение линии примет вид
(14)
Поэтому, если точка М(х',у') удовлетворяет уравнению (14), то и точка М'(—х',—у') также удовлетворяет уравнению (14). Таким образом, центр линии является ее центром симметрии.
Заметим, что если кривая второго порядка имеет центр, то, в силу инвариантности I3, получаем
.
Значит,
(15)
Как было показано ранее, можно повернуть систему координат ОXY таким образом, чтобы уравнение (3) не содержало
члена 2а'12х'у'. Ясно, что в этом случае а'12=0 и из формул (4) следует, что
Следовательно,
при а120
(16)
Именно при таком выборе угла поворота, уравнение (3) принимает вид:
(17)
Вывод: путем параллельного переноса приводим уравнение кривой к виду (14)
путем
поворота, если а12О,
приводим уравнение (14) к виду:
(17)
в системе координат О"Х"У".
Линии эллиптического и гиперболического типов
Если I2>О, то уравнение (17), согласно (15), можно записать так:
(18)
Так как
то а11а22>О, т.е. коэффициенты а11 и а22 оба отличны от нуля и имеют одинаковые знаки, совпадающие со знаком I1=a11+а22. Будем в дальнейшем считать, что I1>О, т.е. а11>0 и а22>0 (если это не так, то умножим обе части (18) на — 1). Заметим, что при такой операции (нормировании) знак I2 не меняется.
Теорема. Пусть уравнение (1) КВП — эллиптического типа (I2>О) нормировано так, что I1>О. Тогда при I3<0 — это уравнение эллипса. При I3=0 — единственная точка (уравнение вырожденного эллипса). При I3>0 — пустое множество точек (уравнение мнимого эллипса).
Доказательство. Так для уравнения (18), I1=а"11+а"22,
I2=а"11а22, то из условия I1>О, I2>0 следует, что а"11>О, а"22>0. Поэтому уравнение (18) можно записать так:
,
при I3<0;
(19)
,
при I3=0;
(20)
,
при I3>0;
(21)
Теорема доказана.
Теорема.
Пусть
уравнение (1) - КВП гиперболического типа
(I2<0).
Тогда при I30
— это уравнение гиперболы, а при I3=0
- пара пересекающихся прямых.
Доказательство. Так как для уравнения (18):
то из I2<0 следует а"11, и а"22 имеют разные знаки. Пусть а"11>0, а"22<О, тогда уравнение (18) можно записать так:
,
при I3<0;
(22)
,
при I3=0;
(23)
,
при I3>0;
(24)
Уравнение (22) задает гиперболу, симметричную относительно
оси О"Y".
Уравнение (23) можно переписать так:
– пара пересекающихся прямых в системе координат 0"Х"Y".
Уравнение (24) — каноническое уравнение гиперболы.
Случай, когда а11"<О, а22">0 рассматривается аналогично.
Теорема доказана.