- •Раздел 1. Физика нефтяного пласта
- •Раздел 1. Физика нефтяного пласта 1
- •Физические свойства нефтегазовых пластов; коэффициенты,характеризующие эти свойства, области их использования и способы измерения.
- •Нефтегазовый пласт как многофазная многокомпонентная система.
- •Терригенные, карбонатные и заглинизированные пласты; особенности ихстроения.
- •Основные физические свойства нефтегазовых пластов и пластовых флюидов, используемые при проектировании и контроле за разработкой.
- •Естественная и искусственная трещинность, способы описания.
- •Деформация нефтегазового пласта; физическая сущность; коэффициенты и способы их определения.
- •Физика процессов вытеснения нефти и газа водой, обобщенный закон Дарси. Функции относительных фазовых проницаемостей, характеристика и способы определения.
- •Физика процессов теплоотдачи в нефтегазовых пластах; параметры, характеризующие свойства пласта; тепловые поля.
- •Физическая сущность явления смачиваемости нефтегазовых пластов; виды смачиваемости; параметры, характеризующие смачиваемостьпласта.
- •Фазовые превращения углеводородных систем в, нефтегазовых пластах; влияние термобарических условий пласта на фазовое состояние углеводородных систем.
- •Реология ньютоновских и неныотоновских нефтей; физические причины аномальных явлений; фильтрация аномальных нефтей.
- •Давление насыщения нефти газом; способы определения; физические особенности фильтрации газированной жидкости.
- •Реальные и идеальные газы; законы их поведения; коэффициент сверхсжимаемости.
- •Физическая сущность явлений адсорбции в нефтегазовых пластах; удельная поверхность и минералогический состав пласта; изотермы сорбции.
- •Виды остаточной нефти в заводненных пластах; механизмы капиллярного защемления тяжелых углеводородов.
- •Физические принципы повышения нефтеотдачи пластов; основныесвойства пласта и пластовых жидкостей, используемые при повышении нефтеотдачи пласта.
- •Неоднородность нефтегазовых пластов; структурно-литологическая и фазовая неоднородность пласта.
- •Волновые процессы в нефтегазовых пластах; параметры, влияющие на эффективность передачи волновой энергии.
- •Техногенные изменения нефтегазовых пластов при разработке; свойствапласта и пластовых жидкостей, меняющиеся в процессе разработки.
- •Поверхностно-молекулярные свойства системы нефть-газ-вода-порода; капиллярное давление.
Техногенные изменения нефтегазовых пластов при разработке; свойствапласта и пластовых жидкостей, меняющиеся в процессе разработки.
Важное значение в процессе разработки нефтяных и газовых месторождений имеют деформации пород, происходящие вследствие изменения пластового давления, которое может уменьшаться со временем и вновь восстанавливаться при искусственных методах поддержания давления в залежи. Установлено, что с падением пластового давления объем порового пространства пласта уменьшается вследствие упругого расширения зерен породы и возрастания сжимающих усилий, передающихся на скелет от массы вышележащих пород. При этом зерна породы испытывают дополнительную деформацию в пористость среды уменьшается также вследствие перераспределения зерен, более плотной их упаковки и изменения структуры пористой среды. Некоторые из упомянутых процессов, вызывающие изменения объема пор, являются обратимыми, как, например, упругое расширение зерен цемента и их деформации в сторону пустот, не занятых твердым веществом, под действием массы вышележащих пород. Другие процессы, например перегруппировка зерен, скольжение их по поверхности соприкосновения, разрушение и дробление зерен, необратимые. В результате с возрастанием пластового давления должны появиться значительные остаточные деформации, и пористость пород не восстанавливается. Последние деформации пород, по-видимому, характерны для глубокозалегающих пластов. В ряде случаев изменение пористости описывается формулой:
m=m0exp[-βп(σ-σ0)],
m0-пористость при начальном напряжении, βп -коэффициент сжимаемости пор.
βп=βс/ m0, βс - коэффициент объемной упругости породы. Значит больше подвержена изменению проницаемость горных пород.
![]()
где К(σ-р) и К(σ-р)1-коэффициенты проницаемости породы, находящейся под давлением (σ-р) и (σ-р)1
n=2βп1(σ-р)(3+α)/(2+α),
где α - коэффициент, характеризующий структуру поровых каналов.
С уменьшением пластового давления ниже давления насыщения происходит выделение газа, что увеличивает вязкость и плотность нефти, а также способствует снижению проницаемости из-за появления дополнительной фазы. При разгазировании нефти, происходит также выпадение АСПО, что еще более усугубляет ситуацию.
Поверхностно-молекулярные свойства системы нефть-газ-вода-порода; капиллярное давление.
Роль поверхностных явлений в фильтрации
Нефтяной пласт представляет собой залежь осадочных пород в виде тела с огромным скоплением капиллярных каналов и трещин, поверхность которых очень велика. Поверхность поровых каналов в 1 м3 породы может составлять несколько гектаров. Поэтому закономерности движения нефти в пласте и её вытеснения из пористой среды зависят также и от свойств пограничных слоёв соприкасающихся фаз и процессов, происходящих на поверхности контакта нефти, газа и воды с породой.
На формирование залежей углеводородов оказывает влияние количество остаточной воды в залежи (остаточная водонасыщенность, SB), которая в свою очередь зависит от свойств воды и углеводородов и от природы поверхности горной породы.
Под природой поверхности понимаются гидрофильность – способность вещества смачиваться водой и гидрофобность – способность вещества не смачиваться водой.
Физико-химические свойства поверхностей раздела фаз, и закономерности их взаимодействия характеризуются рядом показателей – поверхностным натяжением на границе раздела фаз, явлениями смачиваемости и растекания, работой адгезии и когезии, теплотой смачивания.
Поверхностное натяжение
Поверхностное натяжение связано с такими понятиями как свободная энергия поверхностного слоя жидкости, работа поверхностного натяжения, сила поверхностного натяжения и
Поверхностное натяжение (σ) характеризует избыток свободной энергии сосредоточенной на одном квадратном сантиметре площади поверхностного слоя на границе раздела двух фаз:
Е = σ * S, (1)
где σ – поверхностное натяжение;
S – суммарная поверхность двух фаз.
Поверхностное натяжение характеризует силу, действующую на единицу длины периметра взаимодействия двух фаз (линию смачивания):
![]()
где
– линия смачиваемости.
Физический смысл величины поверхностного натяжения характеризует меру некомпенсированности молекулярных сил
Коэффициент поверхностного натяжения σ зависит от давления, температуры, газового фактора, свойств флюидов.
С увеличением давления σ жидкости на границе с газом понижается. С повышением температуры происходит ослабление межмолекулярных сил и величина поверхностного натяжения чистой жидкости (чистой воды) на границе с паром (газом) уменьшается.
С увеличением количества растворенного газа в нефти величина поверхностного натяжения нефти на границе с газом уменьшается.
Поведение величины σ жидкости на границе с жидкостью зависит во многом от полярности жидкостей.
Поверхностное натяжение малополярных нефтей на границе с водой в пределах давлений, встречаемых в промысловой практике, мало зависит от давления и температуры. Это объясняется относительно небольшим и примерно одинаковым изменением межмолекулярных сил каждой из жидкостей с увеличением давления и температуры, так что соотношение их остаётся постоянным.
Для высоко-полярных нефтей её поверхностное натяжение на границе с водой может увеличиваться с ростом давления и температуры.
Поверхностное натяжение на границе раздела между газом и жидкостью, двумя жидкостями можно измерить, то поверхностное натяжение на границе раздела порода-жидкость, порода-газ измерить трудно.
Поэтому для изучения поверхностных явлений на границе порода-жидкость пользуются косвенными методами изучения поверхностных явлений: измерением работы адгезии и когезии, исследованием явлений смачиваемости и растекаемости, изучением теплоты смачивания.
Смачивание и краевой угол
Смачиванием называется совокупность явлений на границе соприкосновения трёх фаз, одна из которых обычно является твёрдым телом и две другие – не смешиваемые жидкости или жидкость и газ.
И
нтенсивность
смачивания характеризуется величиной
краевого угла смачивания Θ, образованного
поверхностью твёрдого тела с касательной,
проведённой к поверхности жидкости из
точки её соприкосновения с поверхностью.
Краевой угол Θ измеряется в сторону более полярной фазы (в данном случае в сторону воды). Принято условно обозначать цифрой 1 водную фазу, цифрой 2 – углеводородную жидкость или газ, цифрой 3 – твёрдое тело.
![]()
![]()
угол – острый (наступающий), то поверхность – гидрофильная. Если угол – тупой (отступающий), то поверхность – гидрофобная.
К гидрофильным поверхностям относятся силикаты, карбонаты, окислы железа. К гидрофобным поверхностям – парафины, жиры, воск, чистые металлы.
Краевой угол смачивания зависит от строения поверхности, адсорбции жидкостей и газов, наличия ПАВ, температуры, давления, электрического заряда
Поверхностные явления описываются также работой адгезии.
Адгезия – прилипание (сцепление поверхностей) разнородных тел. Когезия – явление сцепления поверхностей однородных тел, обусловленной межмолекулярным или химическим взаимодействием.
Работа адгезии оценивается уравнением Дюпре:
Wa
=
1,2
+
2,3─
1,3
Работа когезии Wк характеризует энергетические изменения поверхностей раздела при взаимодействии частиц одной фазы.
Для характеристики смачивающих свойств жидкости используют также относительную работу адгезии z = Wа/Wк.
Ещё одна характеристика, используемая для описания поверхностных явлений – теплота смачивания.
Установлено, что при смачивании твёрдого тела жидкостью наблюдается выделение тепла, так как разность полярностей на границе твёрдое тело–жидкость меньше, чем на границе с воздухом. Для пористых и порошкообразных тел теплота смачивания обычно изменяется от 1 до 125 кДж/кг и зависит от степени дисперсности твёрдого тела и полярности жидкости.
Теплота смачивания характеризует степень дисперсности твёрдого тела и природу его поверхности. Большее количество теплоты выделяется при смачивании той жидкостью, которая лучше смачивает твёрдую поверхность.
Если через q1 – обозначить удельную теплоту смачивания породы водой, а через q2 – обозначить удельную теплоту смачивания породы нефтью, то для гидрофильных поверхностей будет выполняться соотношение:
(q1/ q2) > 1, а для гидрофобных: (q1/ q2) < 1.
Кинетический гистерезис смачивания
Явления смачиваемости рассматривались для равновесного состояния системы. В пластовых условиях наблюдаются неустойчивые процессы, происходящие на поверхности раздела фаз. За счет вытеснения нефти водой образуется передвигающийся трехфазный периметр смачивания. Угол смачивания изменяется в зависимости от скорости и направления движения жидкости (менисков жидкости, рис. 1) в каналах и трещинах.
Р
ис.
1 Схема изменения углов смачивания при
изменении направления движения мениска
в капиллярном канале: 1 –наступающий,
2 – отступающий углы смачивания при
движении водо-нефтяного мениска в
цилиндрическом канале с гидрофильной
поверхностью ( – статический угол
смачивания)
Кинетическим гистерезисом смачивания принято называть изменение угла смачивания при передвижении по твердой поверхности трехфазного периметра смачивания. Величина гистерезиса зависит от:
направления движения периметра смачивания, то есть от того, происходит ли вытеснение с твердой поверхности воды нефтью или нефти водой;
скорости перемещения трехфазной границы раздела фаз по твердой поверхности;
шероховатости твердой поверхности;
адсорбции на поверхности веществ.
Явления гистерезиса возникают, в основном, на шероховатых поверхностях и имеют молекулярную природу. На полированных поверхностях гистерезис проявляется слабо.
Капилярное давление.
Капиллярное давление свойственно системе, состоящей, по крайней мере, из трёх фаз.
Рк=2соs/rк,
В
зависимости от смачивания возникает
своя функция капиллярного давления.
Для смачиваемых пластов капиллярное
давление имеет вид
Ф
ункция
капиллярного давления зависит от
коллекторских свойств. Чем выше
коэффициент k, тем более сдвинута кривая
влево, тем ниже остаточная водонасыщенность.
Но всё же наша функция
н
еявным
образом характеризует распределение
пор по размерам.
С
трелка
указывает на возрастание k.
1 – ширина переходной зоны, определяемая капиллярным давлением.
Высота переходной зоны может быть более 30 м.
Одной из определяющих характеристик на практике является функция Леверетта.
Функция Леверетта – отношение капиллярного давления к давлению, развивающемуся в порах среднего размера: _
I(S)=Рк(S)/Р

Капиллярное давление имеет гистерезис, который определяется тем, какой процесс идёт:
увеличение насыщения водой (пропитка)
уменьшение насыщения водой (дренаж)
Соответствующие кривые для пропитки и дренажа совершенно разные:

