
- •Реконструкция жилых зданий Часть I Технологии восстановления эксплуатационной надежности жилых зданий
- •Содержание
- •Предисловие
- •Введение
- •Глава 1 объемно-планировочные и конструктивные решения реконструируемых жилых зданий
- •§ 1.1. Роль реконструкции зданий в решении социально-экономических и градостроительных задач
- •Жилищный фонд Российской Федерации, размещенный в 4-, 5-этажных домах первых массовых серий
- •§ 1.2. Градостроительные аспекты реконструкции жилой застройки
- •§ 1.3. Характеристика жилищного фонда старой постройки
- •Классификация основных схем планировочной компоновки жилых капитальных зданий старой постройки
- •Конструктивные схемы капитальных жилых зданий старой постройки
- •§ 1.4. Объемно-планировочные и конструктивные решения домов первых массовых серий
- •Общая площадь квартир (м2) по нормам проектирования
- •§ 1.5. Жизненный цикл зданий
- •§ 1.6. Моделирование процесса физического износа зданий
- •§ 1.7. Условия продления жизненного цикла зданий
- •§ 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки
- •Глава 2 инженерные методы диагностики технического состояния конструктивных элементов зданий
- •§ 2.1. Общие положения
- •Классификация повреждений конструктивных элементов зданий
- •§ 2.2. Физический и моральный износ зданий
- •Оценка степени физического износа по материалам визуального и инструментального обследования
- •§ 2.3. Методы обследования состояния зданий и конструкций
- •§ 2.4. Инструментальные средства контроля технического состояния зданий
- •Характеристики тепловизоров
- •§ 2.5. Определение деформаций зданий
- •Значение предельно допустимых прогибов
- •§ 2.6. Дефектоскопия конструкций
- •Повреждения и дефекты фундаментов и грунтов основания
- •Число точек зондирования для различных зданий
- •Значения коэффициента к снижения несущей способности кладки в зависимости от характера повреждений
- •§ 2.7. Дефекты крупнопанельных зданий
- •Классификация дефектов панельных зданий первых массовых серий
- •Допустимая глубина разрушения бетона за 50 лет эксплуатации
- •§ 2.8. Статистические методы оценки состояния конструктивных элементов зданий
- •Значение показателя достоверности
- •Глава 3 методы реконструкции жилых зданий
- •§ 3.1. Общие принципы реконструкции жилых зданий
- •Методы реконструкции зданий
- •§ 3.2. Архитектурно-планировочные приемы при реконструкции жилых зданий ранней постройки
- •§ 3.3. Конструктивно-технологические решения при реконструкции жилых зданий старой постройки
- •§ 3.4. Методы реконструкции малоэтажных жилых зданий первых массовых серий
- •§ 3.5. Конструктивно-технологические решения при реконструкции зданий первых массовых серий
- •Уровень реконструктивных работ жилых зданий первых типовых серий
- •Глава 4 математические методы оценки надежности и долговечности реконструируемых зданий
- •§ 4.1. Физическая модель надежности реконструируемых зданий
- •§ 4.2. Основные понятия теории надежности
- •§ 4.3. Основная математическая модель для изучения надежности зданий
- •§ 4.4. Методы оценки надежности зданий с помощью математических моделей
- •§ 4.5. Асимптотические методы в оценке надежности сложных систем
- •§ 4.6. Оценка среднего времени до возникновения отказа
- •§ 4.7. Иерархические модели надежности
- •Методики оценки функции надежности p(t) реконструированных зданий
- •§ 4.8. Пример оценки надежности реконструируемого здания
- •Глава 5 основные положения технологии и организации реконструкции зданий
- •§ 5.1. Общая часть
- •§ 5.2. Технологические режимы
- •§ 5.3. Параметры технологических процессов при реконструкции зданий
- •§ 5.4. Подготовительные работы
- •§ 5.5. Механизация строительных процессов
- •§ 5.6. Технологическое проектирование
- •§ 5.7. Проектирование технологических процессов реконструкции зданий
- •§ 5.8. Календарные планы и сетевые графики
- •§ 5.9. Организационно-технологическая надежность строительного производства
- •Глава 6 технология производства работ по повышению и восстановлению несущей и эксплуатационной способности конструктивных элементов зданий
- •Расчетное сопротивление грунтов по нормам 1932 - 1983 гг.
- •§ 6.1. Технологии укрепления оснований
- •§ 6.1.1. Силикатизация грунтов
- •Радиусы закрепления грунтов в зависимости от коэффициента фильтрации
- •Технология и организация производства работ
- •Механизмы, оборудование и приспособления для проведения инъекционных работ
- •Значения коэффициента насыщения грунта раствором
- •§ 6.1.2. Закрепление грунтов цементацией
- •§ 6.1.3. Электрохимическое закрепление грунтов
- •§ 6.1.4. Восстановление оснований фундаментов с карстовыми образованиями
- •§ 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
- •Прочность грунтоцементных образований
- •§ 6.2. Технологии восстановления и усиления фундаментов
- •§ 6.2.1. Технология усиления ленточных фундаментов монолитными железобетонными обоймами
- •§ 6.2.2. Восстановление несущей способности ленточных фундаментов методом торкретирования
- •§ 6.2.3. Усиление фундаментов сваями
- •§ 6.2.4. Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
- •§ 6.2.5. Усиление фундаментов сваями в раскатанных скважинах
- •Производство работ
- •§ 6.2.6. Усиление фундаментов многосекционными сваями, погружаемыми методом вдавливания
- •§ 6.3. Усиление фундаментов с устройством монолитных плит
- •§ 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
- •§ 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
- •§ 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений
- •§ 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов
- •§ 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера
- •§ 6.5. Технология усиления кирпичных стен, столбов, простенков
- •§ 6.6. Технология усиления железобетонных колонн, балок и перекрытий
- •Усиление конструкций композитными материалами из углеродных волокон
- •Глава 7 индустриальные технологии замены перекрытий
- •§ 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий
- •График производства работ при устройстве монолитного перекрытия по профнастилу
- •§ 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов
- •§ 7.3. Технология замены перекрытий из крупноразмерных плит
- •§ 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке
- •§ 7.5. Технология возведения монолитных перекрытий
- •§ 7.6. Эффективность конструктивно-технологических решений по замене перекрытий
- •Трудозатраты на устройство междуэтажных перекрытий при реконструкции жилых зданий
- •Область эффективного применения различных конструктивных схем перекрытий
- •График производства работ по устройству сборно-монолитных перекрытий
- •Глава 8 повышение эксплуатационной надежности реконструируемых зданий
- •§ 8.1. Эксплуатационные характеристики ограждающих конструкций
- •§ 8.2. Повышение энергоэффективности ограждающих конструкций
- •§ 8.3. Характеристики теплоизоляционных материалов
- •§ 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями
- •§ 8.5. Теплоизоляция стен с устройством вентилируемых фасадов
- •Физико-механические характеристики облицовочных плит
- •§ 8.6. Технологии устройства вентилируемых фасадов
- •Характеристика средств подмащивания
- •График производства работ по теплозащите стен пятиэтажного 80-квартирного жилого дома серии 1-464
- •§ 8.7. Оценка эксплуатационной надежности и долговечности утепленных фасадных поверхностей
- •§ 8.8. Управляемые технологии энергопотребления жилых зданий
- •Список литературы
Производство работ
На рис. 6.28 приведены варианты технологических схем усиления фундаментов короткими сваями, расположенными под различным углом к вертикальной оси фундамента. Для реализации процессов усиления требуется отрывка траншей по периметру фундаментов, которая осуществляется участками длиной 6-10 м. Затем производится устройство раскаточных скважин с расчетным шагом размещения (1,0-1,5 м) и заданной глубиной.
Рис. 6.28. Технологическая схема усиления фундаментов с применением свай в раскаточных скважинах а, б - на уровне залегания подошвы фундамента; в, г - путем устройства вертикальных свай и ростверка; д - наклонными сваями без отрывки фундамента; 1 - приямок; 2 - ограждение приямка; 3 - железобетонная свая; 4 - ростверк; 5 - фундамент реконструируемого здания; 6 - штраба; 7 - зона уплотненного грунта; 8 - засыпка щебнем с уплотнением
При наличии слабых прослоек фунта повышение их плотности достигается путем заполнения щебнем, шлаком и др. сыпучими материалами, которые втапливаются в стенки скважин.
Песчаные грунты с низкой влажностью перед устройством скважины увлажняются.
При работе с водонасыщенными грунтами особое внимание уделяется сохранению устойчивости скважин.
Процесс устройства свай состоит в армировании скважин и укладке бетонной смеси. Как правило, бетонная смесь приготавливается на объекте. Для этого используются передвижная бетономешалка и сухие расфасованные смеси. Подача бетона производится из бункера или с помощью лотков. Необходимо обязательное вибрационное уплотнение глубинными вибраторами.
Более трудоемким является процесс усиления фундаментов внутренних стен. Стесненные условия производства работ требуют значительного объема подготовительных работ, дополнительных трудозатрат по доставке материалов, перемещения установки для раскатывания скважин и др.
Наиболее технологичным является усиление фундаментов наружных стен путем устройства вертикальных скважин. Для передачи нагрузки в местах примыкания сваи к фундаменту устраивается штраба, которая служит элементом ростверка. Такое решение позволяет снизить объемы земляных работ и существенно интенсифицировать основные технологические процессы.
По окончании работ по устройству ростверка на захватке и набора прочности бетоном восстанавливается гидроизоляция и производится обратная засыпка пазух с послойным вибрационным уплотнением грунта.
Оценка уровня трудозатрат и технологичности производства работ показывает, что наиболее эффективными являются технологические схемы, исключающие или снижающие до минимума объемы земляных работ.
Использование коротких свай в раскатанных скважинах обеспечивает снижение расхода бетона и металла в 1,5-1,8 раза и трудоемкости работ до трех раз.
Наибольшая технологическая эффективность достигается для возведения свайных фундаментов под пристройки объемов (эркеров, лоджий, лифтовых шахт) при реконструкции малоэтажных жилых зданий.
Использование в качестве раскатчика скважин экскаваторов позволяет совмещать производство земляных и свайных работ.
Контроль качества работ осуществляется в период раскатки скважин. Допускается отклонение сваи от проектного положения не более 0,1 диаметра сваи. При наличии слабых грунтов в верхней зоне раскатка скважин ведется в два этапа: с укреплением грунтов в начальной фазе и последующим прохождением раскатчика до проектной отметки.
Оценка несущей способности свай осуществляется по материалам контрольных испытаний свай, которые устраиваются в непосредственной близости к усиляемому фундаменту.
В процессе производства работ ведется журнал, в котором отражаются технологические режимы, характеристики используемых материалов и нестандартные ситуации.