
- •1. Основы теплового расчета рекуперативных теплообменных аппаратов.
- •2. Регенеративные аппараты. Процесс теплообмена. Основы теплового расчета.
- •3.Тепловой расчет мву(располагаемая и полезная разности температур.)
- •6.Расчет действительной сушилки по I-d-диаграмме. Тепловой баланс действительной сушильной установки.
- •Построение процесса для действительной сушилки на I-d-диаграмме
- •7.Основы теплообмена в ректификационных установках. Расчет ректификационных установок.
- •8. Основы теплового расчета контактных теплообменников
- •Расчет безнасадочного аппарата:
- •Расчет насадочных аппаратов
- •9. Основные понятия о процессе сушки Формы связи влаги с материалом. Кинетика сушки.
- •Свойства влажных материалов
- •Кинетика сушки влажных материалов
- •10. Бинарные смеси со взаимно растворимыми компонентами.
- •11. Бинарныесмеси со взаимно нерастворимыми компонентами.
- •12.Тепловой расчёт трубопроводов систем теплоснабжения. Коэффициент эффективности тепловой изоляции.
- •1) Определение тепловых потерь трубопровода.
- •2) Определение теплового поля для подземного трубопровода.
- •3) Тепловые потери и к-т эффективности тепловой изоляции.
- •4) Тепловой расчёт паропроводов.
- •5) Выбор толщины изоляционного слоя.
- •13. Гидравлический режим тепловых сетей.
- •14. Режимы регулирования систем теплоснабжения.
- •15. Основы гидравлического расчета систем теплоснабжения.
- •1, Регулирование по отопительной нагрузке
- •2, Регулирование по вентиляционной нагрузке
- •I – зона местного количественного регулирования,
- •II – зона центрального качественного регулирования,
- •III - зона местного количественного регулирования.
- •3, Центральное регулирование по нагрузке горячего водоснабжения при закрытой системе и параллельном подключении подогревателей горячего водоснабжения
- •4, Центральное регулирование по нагрузке гвс при открытой схеме теплоснабж. (Рис. Т.С.4)
- •17. Основы гидравлического расчета конденсатопроводов.
- •18. Пьезометрический график (Рис. Т.С.5)
- •19. Расчет гидравлического режима. Гидравлическая устойчивость.
- •Гидравлическая устойчивость системы
- •20.Регулирование давления в тепловой сети. Нейтральные точки.
- •21. Центральное качественное регулирование отопительной нагрузки.
- •22. Центральное качественное регулирование совмещённой нагрузки.
- •23. Определение тепловых нагрузок. Отопление. Вентиляция.
- •Отопление
- •24. Схемы присоединения стс к водяным тепловым сетям.
- •25.Конструкция подвижных и неподвижных опор. Расчет неподвижной опоры.
- •27. Определение расчетных расходов теплоносителя. (Рис. Т.С.22,23,24)
17. Основы гидравлического расчета конденсатопроводов.
Конденсатопроводы, в которых обеспечивается р, исключающее вторичное вскипание конденсата, рассчитываются также как трубопроводы водяных тепловых сетей. В случае вторичного вскипания конденсата по трубопроводу перемещается пароводяная эмульсия, Конденсатопроводы называют двухфазными.
Пропускная способность двухфазных конденсатопроводов меньше, чем напорных, в узловых точках такой сети необходимо устанавливать регуляторы давления после себя. Удельные потери давления для двухфазных конденсатопроводов определяются
- напорный конденсатопровод
Диаметр двухфазного конденсатопоровода может быть определен по формуле:
Где:
-
поправочный коэффициент, зависящий от
давления пара перед потребляющей
установкой и в конце конденсатопоровода.
Доля местных потерь в конденсатопроводах
может быть принята 25% от общих потерь
давления в сети.
ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ПАРОПРОВОДОВ
Потери энергии при движении жидкости по трубам определяются режимом движения и характером внутренней поверхности труб. Свойства жидкости или газа учитываются в расчете с помощью их параметров: плотности р и кинематической вязкости v. Сами же формулы, используемые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.
Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара. При расчете газопроводов плотность газа определяют в зависимости от давления по уравнению состояния, написанному для идеальных газов, и лишь при высоких давлениях (больше примерно 1,5 МПа) вводят в уравнение поправочный коэффициент, учитывающий отклонение поведения реальных газов от поведения идеальных газов.
При использовании законов идеальных газов для расчета трубопроводов, по которым движется насыщенный пар, получаются значительные ошибки. Законы идеальных газов можно использовать лишь для сильно перегретого пара. При расчете паропроводов плотность пара определяют в зависимости от давления по таблицам. Так 'как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются потерями давления на участке, по среднему давлению определяют плотность пара и далее рассчитывают действительные потери давления. Если ошибка оказывается недопустимой, производят пересчет.
При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, использующими пар.
Расчет качественного регулирования заключается в определении температуры воды в тепловой сети в зависимости от тепловой нагрузки при постоянном эквиваленте расхода теплоносителя в тепловой сети, т.е W0=1 (нет изменения расхода).
Рис.
Т.с.13.
-
относительное кол-во теплоты.
Уравнение
температурных графиков: Все
зависят от
,
на графике
уменьшается(в нижней части)
а)-
температура сетевой воды перед абонентской
установкой.
б) температура сетевой воды после отопительной установки
в) температура воды после элеватора или после смесительного устройства
.
Где
-
температурный напор отопительной
установки при расчетном режиме.
-
перепад температур сетевой воды в
тепловой сети при расчетном режиме.
-
перепад температур воды в местной или
абонентской установке.
При отсутствии смешения (элеватора) на абонентском вводе перепады температур воды равны и уравнения а) и в) совпадают.
δτ'0 = θ'0