
- •2 Вопрос .
- •4 Вопрос.
- •9. Действие электрического тока на возбудимые ткани
- •19. Строение и механизм передачи возбуждения через нервно-мышечный (химический) синапс. Особенности проведения. Миорелаксанты.
- •4.Стр.53
- •14. Продолговатый мозг, его рефлекторная деятельность и проводниковая функция.
- •16. Ретикулярная формация ствола головного мозга.
- •17.Стр.54Функции мозжечка. Последствия поражения и удаления мозжечка
- •20 Вопрос внс
- •Вопрос 24
- •28 Вопрос.Лимбическая система.
4.Стр.53
Нервный центр – это совокупность нейронов, обеспечивающих регуляцию какого-либо конкретного физиологического процесса или функции.
Нервный центр в узком смысле – это совокупность нейронов, без которых данная конкретная функция не может регулироваться. .
Все нейроны нервного центра разделяют на 2 неравные по количеству и качеству группы.
Первая группа – нейроны центральной зоны. Это наиболее возбудимые нейроны, которые возбуждаются в ответ на поступление порогового (для нервного центра) сигнала. Таких нейронов около 15-20%, и они не обязательно располагаются в середине нервного центра, как это изображено на рис.1. Особенностью их является то, что они имеют на своем теле больше синаптических терминалей от сенсорных и вставочных нейронов.
Вторая группа – нейроны подпороговой каймы. Это менее возбудимые нейроны, которые не возбуждаются в ответ на поступление пороговых им-пульсов, но при действии более сильных раздражителей они возбуждаются и включаются в работу нервного центра, обеспечивая ее усиление. Таких нейронов большинство (80-85%), и они не обязательно располагаются на периферии нервного центра, но все имеют значительно меньше синаптических терминалей от сенсорных и вставочных нейронов по сравнению с нейронами центральной зоны.
От структуры нервного центра зависят его свойства, а они, в свою очередь, влияют на процесс проведения возбуждения через нервный центр, на его скорость и степень выраженности. От свойств нервных центров во многом зависит процесс распространения возбуждения по ЦНС, что имеет важное значение в интегративной деятельности организма.
Свойства нервных центров обусловлены описанной выше нейронной организацией нервного центра, а также химическим способом передачи возбуждения в синапсах. При электрическом способе передачи возбуждения нервные центры не имели бы подобных свойств.
Свойства нервных центров: 1 одностороннее проведение возбуждения; 2 задержка проведения возбуждения; 3 суммация; 4 облегчение; 5 окклюзия; 6 мультипликация; 7 трансформация; 8 последействие; 9 посттетаническая потенциация; 10 утомление; 11 тонус; 12 высокая чувствительность к изменению состояния внутренней среды организма; 13 пластичность.
1) Свойство «одностороннее проведение возбуждения» прямо связано со структурно-функциональными особенностями синапса. В синапсе медиатор выделяется из пресинаптического аппарата и поступает на постсинаптическую мембрану, на которой находятся белки-рецепторы, чувствительные к этому медиатору (они закрывают различные ионные каналы на постсинаптической мембране). Следовательно, возбуждение через синапс, а значит, и через нервный центр проходит только в одну сторону.
2) Свойство «задержка проведения возбуждения» также связано с химическим способом передачи возбуждения в синапсах. В отличие от электрического, при этом способе на передачу возбуждения в синапсе, а значит, и в нервном центре затрачивается больше времени (выделение медиатора из пресинаптического аппарата, поступление его на постсинаптическую мембрану, контакт с белками-рецепторами и т.д.), чем на проведение возбуждения по нервному волокну. Время проведения возбуждения («синаптическая задержка») через синапсы соматической нервной системы составляет 0,5-1 мс, а через синапсы вегетативной нервной системы – до 10 мс.
3) Суммация – это возникновение возбуждения в нервном центре при поступлении к нему нескольких допороговых импульсов, каждый из которых в отдельности не может возбуждения . Фактически этот процесс происходит на нейронах подпороговой каймы. Различают два вида суммации: пространственную и временною.
Пространственная суммация возникает в том случае, когда к нервному центру (к его нейронам) приходят одновременно, несколько допороговых импульсов. Временная (последовательная) суммация возникает в том случае, когда к нейронам нервного центра по одному афферентному входу приходит не один, а серия импульсов с очень небольшими по времени межимпульсными промежутками
4) Облегчение – это увеличение количества возбужденных нейронов в нервном центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному, а по двум или более афферентным входам.
5) Окклюзия – это уменьшение количества возбужденных нейронов в нервной центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному, а по двум или более афферентным входам
6) Мультипликационное возбуждение (мультипликация) заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение поступает одновременно не на один, а на несколько моторных нейронов . В связи с этим эффект на рабочем органе усиливается в несколько раз, или в работу вовлекаются не одна, а несколько рабочих структур, Это свойство особенно ярко проявляется в ганглиях автономной (вегетативной) нервной системы.
7) Трансформация ритма возбуждения – это изменение частоты импульсов на выходе из нервного центра по сравнению с частотой импульсов на входе в нервный центр.
8) Последействие – это продолжение возбуждения моторного нейрона в течение некоторого времени после прекращения действия раздражителя.
Сущность механизма последействия заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение распространяется на соседние вставочные нейроны и по ним возвращается на первоначальный вставочный нейрон. Возбуждение как бы «запирается» в нейронной ловушке и циркулирует в ней достаточно долго. Наличием таких нейронных ловушек объясняют, в частности, механизм кратковременной памяти.
9) Посттетаническая потенциация (синаптическое облегчение) – это улучшение проведения в синапсах после короткого раздражения афферентных путей.
10) Утомление нервного центра (посттетаническая депрессия, синаптическая депрессия) – это уменьшение или прекращение импульсной активности нервного центра в результате длительной стимуляции его афферентными импульсами (или произвольного вовлечения его в процесс возбуждения по¬средством импульсов, идущих из коры больших полушарий). Причинами утомления нервного центра могут быть:
• истощение запасов медиатора в афферентном или вставочном нейроне;
• снижение возбудимости постсинаптической мембраны (то есть мембраны моторного или вставочного нейрона) из-за накопления, например, продуктов метаболизма.
11) Тонус нервного центра – это длительное, умеренное возбуждение нервного центра без видимо утомления Причинами тонуса могут быть:
• потоки афферентных импульсов, постоянно поступающие с неадаптирующихся рецепторов;
• гуморальные факторы, постоянно присутствующие в плазме крови;
• спонтанная биоэлектрическая активность нейронов
• циркуляция импульсов в ЦНС.
12) Нервный центр состоит из нейронов, а они очень чувствительны к изменению состава внутренней среды организма, что и отражается на свойствах нервных центров. Наиболее важными факторами, влияющими на работу нервных центров, являются: гипоксия; недостаток питательных веществ (например, глюкозы); изменение температуры; воздействие продуктов метаболизма; воздействие различных токсических и фармакологических препаратов.
13) Пластичность нервного центра означает его способность изменять при определенных обстоятельствах свои функциональные свойства. В основе этого явления лежит поливалентность нейронов нервных центров. Особенно ярко проявляется это свойство при всевозможных повреждениях ЦНС, когда организм компенсирует утраченные функции за счет сохранившихся нервных центров. Особенно хорошо свойство пластичности выражено в коре больших полушарий. Например, центральные параличи, связанные с патологией двигательных центров коры, иногда полностью компенсируются, и ранее утраченные двигательные функции восстанавливаются.
5.Суммация возбуждения– усиление рефлекторной реакции в ответ на увеличение частоты подпороговых раздражений афферентного нерва (рецептора), или в результате увеличения количества одновременно раздражаемых афферентных волокон или рецепторов. Различают временную и пространственную суммации. Временная (последовательная) суммация – усиление ответной реакции в результате увеличения частоты раздражений, поступающих на нейрон от одного и того же рецептора. Реализуется путем накопления квантов медиатора в синапсах в количестве, достаточном для деполяризации мембраны нейронов и возникновения ВПСП. Пространственная суммация выявляется при одновременной стимуляции подпороговыми стимулами различных входов в нейрон. Возникает в результате конвергенции возбуждения на один и тот же нейрон, состоит в суммации деполяризации мембраны нейрона под влиянием одновременно возникших ВПСП в нескольких синапсах. На основе суммации импульсов на одних и тех же нейронах развиваются явления “облегчения” и “окклюзии“. При суммации отдельных импульсов, поступающих по разным афферентным аксонам, суммарный эффект может быть больше, чем арифметическая сумма их отдельных эффектов (“облегчение”) и может быть меньше (“окклюзия”). Ряд мотонейронов образует нейронный “пул”, в котором Шеррингтон различал центральную зону, или пороговую (в которой все нейроны возбуждаются, т.к. на них окончания аксона образуют достаточное количество синапсов), и периферическую “кайму”, в которой находятся нейроны, получающие меньшее количество синапсов и развивающие лишь подпороговый потенциал. Нейронные пулы перекрываются. Если в зоне перекрытия оказывается нейрон “каймы”, то при суммации двух возбуждений от двух афферентных нейронов их суммарный эффект увеличивается (“облегчение”). “Окклюзия” – физиологический феномен, регистрируемый в ЦНС, означающий ситуацию когда стимуляция двух афферентных нейронов дает ответ меньшей силы, чем ожидаемая алгебраическая сумма ответов при их раздельной стимуляции.
Трансформация ритма возбуждения – несовпадение частоты выходящих возбуждений по сравнению с частотой стимуляции. Это связано с тем, что в период существования одного ВПСП возможна генерация серии ПД на мембране постсинаптического нейрона.
Рефлекторное последействие и пролонгирование – более длительная продолжительность рефлекторного ответа по сравнению с продолжительностью действия раздражителя, его вызвавшего. Следовое возбуждение может быть обусловлено:
1) суммацией ВПСП (возбуждающих постсинаптических потенциалов), вызванных приходящими к нейронам подпороговыми нервными импульсами,
2) синаптической потенциацией,
3) изменением (увеличением) концентрации ионов калия в синаптической щели, которые усиливают поступление ионов кальция в пресинаптическое окончание и увеличивают выброс медиатора,
4) метаболическими изменениями в синапсе, в частности, активацией циклазных систем,
5) циклическими связями в ЦНС, способными обеспечить следовую самостимуляцию центров.
6. Последействие-это продолжение возбуждения нервного центра после прекращения поступления к нему импульсов по афферентным нервным путям. Причинами последействия являются:
• длительное существование ВПСП, если ВПСП полисинаптический и высокоамплитудный; в этом случае при одном ВПСП возникает несколько ПД;
• многократные появления следовой деполяризации, что свойственно нейронам ЦНС; если следовая деполяризация достигает Екр, то возникает ПД;
• циркуляция возбуждения по замкнутым нейронным цепям
Установлены два механизма, обусловливающие последействие.
Первый связан с тем, что возбуждение в нервных клетках исчезает не сразу после прекращения раздражения. В течение некоторого времени (сотые доли секунды) нервные клетки продолжают давать ритмические разряды импульсов. Этот механизм может обусловить лишь сравнительно кратковременное последействие. Второй механизм является результатом циркуляции нервных импульсов по замкнутым нейронным цепям нервного центра и обеспечивает более длительное последействие.
Возбуждение одного из нейронов передается на другой, а по ответвлениям его аксона вновь возвращается к первой нервной клетке.
Циркуляция нервных импульсов в нервном центре будет продолжаться до тех пор, пока не наступит утомление одного из синапсов или же активность нейронов не будет приостановлена приходом тормозных импульсов.
В ответ на одиночную афферентную волну, идущую от рецепторов к нейронам, в пресинаптической части синапса освобождается небольшое количество медиатора. При этом в постсинаптической мембране нейрона обычно возникает ВПСП — небольшая местная деполяризация. Для того, чтобы общая по всей мембране нейрона величина ВПСП достигала порога возникновения потенциала действия, требуется суммация на мембране клетки многих подпороговых ВПСП. Лишь в результате такой суммации возбуждения возникает ответ нейрона. Различают пространственную и временную суммацию.
Пространственная суммация наблюдается в случае одновременного поступления нескольких импульсов в один и тот же нейрон по разным пресинаптическим волокнам. Одномоментное возбуждение синапсов в различных участках мембраны нейрона повышает амплитуду суммарного ВПСП до пороговой величины. В результате возникает ответный импульс нейрона и осуществляется рефлекторная реакция. Например, для получения ответа двигательной клетки спинного мозга обычно требуется одновременная активация 50-100 афферентных волокон от соответствующих периферических рецепторов.
Временная суммация происходит при активации одного и того же афферентного пути серией последовательных раздражений. Если интервалы между поступающими импульсами достаточно короткий ВПСП нейрона от предыдущих раздражений не успевают затухать, то последующие ВПСП накладываются друг на друга, пока деполяризация мембраны нейрона не достигнет критического уровня для возникновения потенциала действия. Таким способом даже слабые раздражения через некоторое время могут вызывать ответные реакции организма (например, чихание и кашель в ответ на слабые раздражения слизистой оболочки дыхательных путей).
7.торможение- это активный процесс, результатом которого является прекращение возбуждения или его ослабление .
виды торможения: пресинаптическое и постсинаптическое ТПСП возникает под влиянием ГАМК и глицина. В спинном мозге глицин выделяется особыми тормозными клетками на мембране мотонейронов. Действуя на ионотропный рецептор постсинаптической мембраны , глицин увеличивает ее проницаемость для хлора, при этом хлор поступает в клетку согласно концентрационному градиенту, но вопреки электрическому градиенту, в результате чего развивается гиперполяризация, что снижает возбуждения нейрона
Пресинаптическое торможение
в основе механизма пресинаптического торможения лежит деполяризация пресинаптических окончаний ( тормозная пресинаптическая деполяризация - ТДП). В очаге деполяризации нарушается процесс распространения возбуждения , следовательно поступающие к нервному окончанию импульсы, не имея возможности пройти зону деполяризации в обычном количестве т обычной амплитуде, не обеспечивают выделения медиатора в синаптическую щель в достаточном количестве - постсинаптический нейрон не возбуждается, его функциональное состояние остается неизменным.
Роль: во-первых, оба вида торможения являются важным фактором обеспечения координационной деятельности ЦНС. Об этом свидетельствует тот факт, что блокада торможения ведет к широкой иррадации возбуждения и судорогам. (Н-р, при выключении постсинаптического торможения столбнячным токсином).
во-вторых, оба известных вида торможения со всеми их разновидностями выполняют охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов и прекращению деятельности ЦНС.
в-третьих, торможение играет важную роль в обработке поступающей в ЦНС информации. Торможение обеспечивает выделение существенных сигналов из фона.
8. Постсинаптическое торможение. Постсинаптическое торможение(рис. 1В) наблюдается при выделении медиатора (например, ГАМК), повышающего проводимость постсинаптической мембраны дляCl– или/и К+. При этом возникают тормозные постсинаптические потенциалы, гиперполяризующие постсинаптическую мембрану, понижающие возбудимость клетки и препятствующие генерации ПД. Постсинаптическое торможение обусловлено формированием на нейроне тормозными вставочными нейронами тормозных синапсов. В результате активации тормозных синапсов на нейроне (чаще всего на соме) возникают тормозные постсинаптические потенциалы (ТПСП). Возникновение ТПСП связано с тем, что при выделении медиатора из пресинаптического окончания тормозного нейрона и дальнейшего взаимодействия его с рецепторами на постсинаптической мембране тормозимого нейрона наблюдается кратковременное повышение проводимости мембраны для ионов хлора или калия. При суммации всех постсинаптических потенциалов (ВПСП и ТПСП) на аксонном холмике изменение мембранного потенциала на нем не достигнет критического уровня деполяризации, и поэтому не возникнет ПД на аксоне нейрона. Нейрон будет заторможен. Этот вид торможения тотально выключает нейрон из системы нейронов. В качестве тормозного медиатора в постсинаптическом торможении чаще всего выступает глицин. Постсинаптическое торможение предотвращает возникновение процесса возбуждения.
Пресинаптическое торможение. Пресинаптическое торможение возникает перед синаптическим контактом – в пресинаптической области. Окончание аксона одной нервной клетки (терминаль) образует синапс на окончании аксона другой нервной клетки и блокирует передачу возбуждения в последней. В области такого пресинаптического контакта развивается чрезмерно сильная деполяризация мембраны аксона, которая приводит к угнетению проходящих здесь потенциалов действия.
Пресинаптическое торможение осуществляют нейроны (Б), аксоны которых оканчиваются на возбуждающих синаптических окончаниях другого нейрона (А), образуя аксо-аксональные синапсы (рис. 1Б). Пресинаптическое торможение выполняется посредством одного из двух механизмов.
1. Пресинаптический тормозным нейрон Б выделяет нейромедиатор, который увеличивает Cl–проводимость и вызывает гиперполяризацию мембраны возбуждающего нервного окончания А. Это приводит к снижению возбудимости и увеличению порога генерации ПД возбуждающего окончания.
2. Пресинаптический возбуждающий нейрон выделяет нейромедиатор, вызывающий длительную деполяризацию мембраны, что приводит к инактивации потенциалозависимых Na+-каналов нервного окончания и, соответственно, торможению его активности.
Пресинаптическое торможение – это частный случай синаптических тормозных процессов, проявляющийся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом уровне. Оно развивается в пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. При этом постсинаптическая мембрана не изменяется по своим свойствам. Этот вид торможения осуществляется, также как и постсинаптическое торможение, посредством специальных тормозных нейронов. Структурной основой этого вида торможения является аксо-аксональный синапс. Тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Существенное преимущество данного вида торможения проявляется в том, что клетка полностью сенсибилизирована для других входов. Торможение возникает исключительно на нервных окончаниях, к которым подходят пресинаптические окончания тормозного вставочного нейрона. Один из механизмов угнетения процесса высвобождения медиатора заключается в том, что на мембране нервного окончания в месте аксо-аксонального синапса тормозный медиатор открывает хлорные каналы, и входящий ток ионов хлора Cl– уменьшает влияние входящего тока ионов натрия, вызванного ПД, распространяющегося по аксону. В месте контакта на пресинаптической мембране в результате этого создается небольшая деполяризация, недостаточная для открытия каналов для ионов Са2+. Пресинаптическое торможение подавляет процесс возбуждения.
Максимальный тормозный эффект получается, если тормозный импульс достигает аксо-аксонального синапса за несколько миллисекунд, до прихода сюда ПД возбуждающего аксона. Пресинаптическое торможение предупреждает или заранее исключает развитие постсинаптического возбуждения, но оно не может повлиять на уже развившееся постсинаптическое возбуждение, причем при пресинаптическом торможении в постсинаптической клетке не обнаруживается ни ТПСП, ни изменений электровозбудимости.
На мембране одного нейрона могут одновременно находится два вида синапсов: тормозные и возбудительные, так как мембрана возбудительных синапсов пропускает как ионы натрия, так и ионы калия. В этом случае мембрана нейрона деполяризуется. Мембрана тормозных синапсов пропускает только ионы хлора и гиперполяризуется.
Пре. — пресинаптическая мембрана, Пост.—постсинаптическаямембрана, С—синоптическиепузырьки, Щ—синоптическойщель, М—митохондрий, Ах—ацетилхолин Р—рецепторыипоры(Поры) дендрита(Д)следующего нейрона. Стрелка—одностороннеепроведениевозбуждения.
В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синаптические пузырьки, которые содержат специальные вещества — медиаторы или посредники. Ими могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель.
По характеру воздействия на последующую нервную клетку различают возбуждающие и тормозящие синапсы.
В возбуждающих синапсах медиаторы (например, ацетилхолин) связываются со специфическими макромолекулами по-стсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1 мс) колебание мембранного потенциала в сторону деполяризации или возбуждающий постсинаптический потенциал (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня. Для этого величинадеполяризационного сдвига мембранного потенциала должна составлять не менее 10 мВ. Действие медиатора очень кратковременно (1 -2 мс), после чего он расщепляется на неэффективные компоненты (например, ацетилхолин расщепляется ферментом холинэстеразой на холин и уксусную кислоту) ил и поглощается обратно пресинаптическими окончаниями (например, норадреналин).
В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота). Их действие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны. При этом регистрируется кратковременное колебание мембранного потенциала в сторону гиперполяризации — тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии. Для этого понадобится более сильное раздражение, чтобы достичь критического уровня деполяризации.
9.Торможение вслед за возбуждением - угнетение нейронов после возбуждения. Результат того, что вслед за пиком потенциала действия возникает период следовой гиперполяризации, который характеризуется снижением возбудимости.
Передача возбуждения в центральных синапсах
Центральные синапсы, в отличие от нервно-мышечного, образованы тысячами соединений между многими нейронами, в которых могут использоваться десятки нейромедиаторов различной химической природы. При этом следует учитывать, что для каждого нейротрансмиттера существуют специфические рецепторы, которые разными способами управляют хемозависимыми каналами. Кроме того, если в нервно-мышечных синапсах всегда передаётся лишь возбуждение, то центральные синапсы могут быть как возбуждающими, так и тормозными.
В нервно-мышечном синапсе одиночный потенциал действия, достигший пресинаптического окончания, способен привести к выделению достаточного для передачи сигнала количества медиатора и поэтому потенциал концевой пластинки всегда превышает пороговое значение. Одиночные постсинаптические потенциалы центральных синапсов как правило не превышают даже 1 мВ - их среднее значение составляет всего лишь 0,2- 0,3 мВ, что совершенно недостаточно для достижения критической деполяризации. Чтобы её получить, требуется суммарная активность от 50 до 100 потенциалов действия, достигших пресинаптического окончания один за другим - тогда общее количество выделившегося медиатора может оказаться достаточным для того, чтобы сделать деполяризацию постсинаптической мембраны критической.
В возбуждающих синапсах центральной нервной системы используются, так же, как и в нервно-мышечном синапсе, хемозависимые каналы, которые одновременно пропускают ионы натрия и калия. Когда такие каналы открываются при обычном для центральных нейронов значении потенциала покоя (приблизительно -65 мВ), преобладает направленный внутрь клетки деполяризующий ток натрия.
Потенциал действия обычно возникает в триггерной зоне - аксонном холмике, где самая высокая плотность потенциалзависимых каналов и самый низкий порог деполяризации. Здесь оказывается достаточным сдвиг значения мембранного потенциала с -65 Мв до -55 мВ, чтобы возник потенциал действия. В принципе потенциал действия может образоваться и на теле нейрона, но для этого понадобится изменить мембранный потенциал с -65 мВ до приблизительно -35 мВ, т.е. в этом случае постсинаптический потенциал должен быть гораздо больше - около 30 мВ.
Большинство возбуждающих синапсов образуется на ветвях дендритов. У типичного нейрона обычно существует от двадцати до сорока главных дендритов, разделяющихся на множество мелких ветвей. На каждой такой веточке есть две области синаптических контактов: главный стержень и шипики. Возникшие там возбуждающие постсинаптические потенциалы (ВПСП) пассивно распространяются к аксонному холмику, при этом амплитуда этих локальных потенциалов уменьшается пропорционально расстоянию. И, если даже максимальная величина ВПСП в контактной зоне не превышает 1 мВ, то в триггерной зоне обнаруживается и вовсе ничтожный деполяризующий сдвиг.
При таких обстоятельствах критическая деполяризация триггерной зоны возможна лишь в результате пространственной или последовательной суммации одиночных ВПСП (. Пространственная суммация происходит при одновременной возбуждающей активности группы нейронов, аксоны которых конвергируют к одной общей постсинаптической клетке. В каждой из контактных зон образуется небольшой ВПСП, который пассивно распространяется к аксонному холмику. Когда слабые деполяризующие сдвиги достигают его одновременно, суммарный итог деполяризации может составить величину более 10 мВ: только в таком случае мембранный потенциал уменьшается с -65 мВ до критического уровня -55 мВ и возникает потенциал действия.
Последовательная суммация, её ещё называют временной, наблюдается при достаточно частом ритмическом возбуждении пресинаптических нейронов, когда к пресинаптическому окончанию один за другим через короткий промежуток времени проводятся потенциалы действия. В течение всего этого времени выделяется медиатор, что и приводит к увеличению амплитуды ВПСП. В центральных синапсах оба механизма суммации обычно действуют одновременно и это даёт возможность передать возбуждение постсинаптическому нейрону.
Пессимальное торможение - возникает в синапсах центральной нервной системы при действии сильных и частых раздражителей.
10. Реципрокная иннервация (от лат.reciprocus— возвращающийся, обратный, взаимный), сопряжённая иннервация, рефлекторный механизм координации двигательных актов, обеспечивающий согласованную деятельность мышц-антагонистов (например, одновременное сокращение группы сгибателей сустава и расслабление его разгибателей). Сущность Р. и. заключается в том, что рефлекторное возбуждение в группе нервных клеток, иннервирующих определённые мышцы, сопровождается реципрокным, т. е. сопряжённым, торможением активности в других клетках, функционально связанных с антагонистами, что ведёт к их расслаблению. Т. о., центры мышц-антагонистов — сгибателей и разгибателей — находятся в противоположном состоянии при выполнении многих двигательных актов. Механизм Р. и. обеспечивает возможность осуществления организмом координированных движений (ходьба, чесание, движения глаз, трудовые движения и многие др.).
11. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения.
В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данныхусловий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.
12.Принцип обратной афферентации заключается в рецепторном восприятии результатов рефлекторного акта и проведении информации назад в структуры нервного центра, где она обрабатывается и сравнивается с сохраняющимися параметрами возбуждения. Обратная афферентация реализуется в виде положительной или отрицательной обратной связи. Таким образом, с помощью обратной афферентации нервные центры осуществляют непрерывный контроль эффективности, целесообразности и оптимальности рефлекторной деятельности.