Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FZ_itogovoe_2.docx
Скачиваний:
76
Добавлен:
07.03.2016
Размер:
81.08 Кб
Скачать

19. Строение и механизм передачи возбуждения через нервно-мышечный (химический) синапс. Особенности проведения. Миорелаксанты.

Пресинаптическая мембрана нервно-мышечного синапса представляет собой часть мембраны пресинаптического окончания аксона мотонейрона, ограничивающая синаптическую щель. Через нее осуществляется выделение (экзоитоз) медиатора в синаптическую щель. Медиатор пресинаптического окончания содержится в синаптических пузырьках(везикулах) диаметром 40 нм. Они образуются в комплесе Гольджи, с помощью быстрого прямого аксонного транспорта доставляются в пресинаптическое окончание и там заполняются медиатором и АТФ. В нервно-мышечном синапсе медиатором является ацетилхолин, который образуется из ацетилкоэнзима А и холина под действием фермента холинацетилтрансферазы. Везикулы расположены преимущественно вблизи периодических утолщений пресинаптической мембраны, называемых активными зонами. В неактивном синапсе везикулы с помощью белка синапсина связаны с белками цитоскелета,что обеспечивает им иммобилизацию и резервирование. Важными структурами пресинаптического окончания являются митохондрии, осуществляющие энергетическое обеспечение процесса синаптической передачи, цистерны гладкой ЭПС, содержащие депонированный ион Са, микротрубочки и микрофиламенты, участвующие во внутриклеточном передвижении везикул.

Синаптическая щель в нервно-мышечном синапсе имеет ширину в среднем 50 нм. Она содержит межклеточную жидкость и мукополисахаридное плотное вещество в виде полосок, мостиков, которое называется базальной мембраной и содержит ацетилхолинэстеразу.

Постсинаптическая мембрана содержит рецепторы,способные связывать молекулы медиатора. Ее особенностью является наличие мелких складок, которые образуют карманы, открывающиеся в синаптическую щель.

Таким образом, основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическомокончаниии;

3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к N-холинорецепторам, открытие хемозависимых ионных каналов;

5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

6) возникновение потенциалов действия на мышечной мембране;

7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

Миорелаксанты— лекарственные средства, снижающие тонус скелетной мускулатуры с уменьшением двигательной активности вплоть до полного обездвиживания.

Механизм действия — блокада Н-холинорецепторов в синапсах прекращает подачу нервного импульса к скелетным мышцам, и мышцы перестают сокращаться. Расслабление идет снизу вверх , от кончиков пальцев ног до мимических мышц. Последней расслабляется диафрагма. Восстановление проводимости идет в обратном порядке.

По особенностям взаимодействия с рецепторами миорелаксанты делятся на две группы:

Деполяризирующие миорелаксанты - при контакте с рецепторами вызывают стойкую деполяризацию мембраны синапса, сопровождающуюся кратковременным хаотичным сокращением мышечных волокон (миофасцикуляции), переходящим в миорелаксацию. При стойкой деполяризации нервно-мышечная передача прекращается. Миорелаксациянепродолжительна, происходит за счет удержания открытыми мембранных каналов и невозможности реполяризации. Метаболизируютсяпсевдохолинэстеразой, выводятся почками

Недеполяризирующиемиорелаксанты - блокируют рецепторы и мембранные каналы без их открытия, не вызывая деполяризацию

20в.Физиологические свойства и особенности гладких мышц

Основные функции мышечной ткани:

1.двигательная – обеспечение движения

2.статическая – обеспечение фиксации, в том числе и в определенной позе

3.рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения

4.депонирующая – в мышцах запасаются вода и некоторые питательные вещества.

Физиологические свойства :

Сократимость. Сокращение гладкой мышцы определяется особым характером распостранения возбуждения. Группа клеток взаимодействующих посредством нексусов и своих электрических полей, формирует пучок , который является структурно-функциональной единицей гладкой мышцы и сокращается как единое целое.большая продолжительность сокращения; Время сокращения гладкомышечных волокна в несколько сотен раз больше, чем поперечно. Благодаря этому гладкие мышцы приспособлены к длительному сокращению без больших затрат энергии и медленно устают;

• спонтанная миогенная активность. В отличие от скелетных мышц гладкие мышцы желудка, кишечника, матки, мочеточников, кровеносных сосудов и других внутренних органов развивают спонтанно-тетаноподобные сокращения.Эта спонтанная активность возникает в особых мышечных клетках, которые выполняют функцию водителя ритма, то есть обладают способностью до автоматизма. От этих клеток ПД распространяется со скоростью примерно 0.1 м/с через Нексус на соседние волокна и охватывает всю мышцу. Например, перистальтические сокращения желудка возникают с частотой 3 раза за 1 мин, сегментарные и маятниковые движения в толстом кишечнике — с частотой -20 раз за 1 мин.

• пластичность — способность сохранять длину, приобретенную при растяжении, без изменения напряжения. Это свойство имеет очень большое значение для нормальной деятельности внутренних органов, например мочевого пузыря.

высокая чувствительность к физиологически активных веществ, в частности к медиаторам вегетативной нервной системы — ацетилхолина, а также — серотонина, брадикинина, простагландинов. Указанные биологически активные вещества могут как возбуждать, так и тормозить гладкомышечные волокна. Это зависит от того, какой процесс — деполяризацию, или гиперполяризацию вызывает данное вещество на мембране клетки. Так, например, ацетилхолин вызывает сокращение гладких мышц большинства органов, но способствует расслаблению стенок сосудов некоторых органов. Характер ответы гладких мышц на действие физиологически активного вещества зависит от того, ионные каналы она открывает в свою очередь детерминировано спецификой мембранных рецепторов.

Возбудимость. Потенциал покоя 60-70 мВ. Для миоцитов,обладающих спонтанной элекрической активностью 30-60. Положительный пик ПД меньше, чем в поперечнополосатых меньше, чем в поперечнополосатых мышечных волокнах и достигает 10-15 мВ. Длительность ПД колеблется от 25 мс до 1 с. В процессе формирования потенциала покоя играют роль не только ионы К +, но и Са) Взаимодействие актина и миозина в гладкомышечных волокнах также активируется ионами Са 2, но они попадают в клетки не с сарко-ретикулума, а транспортируются туда с межклеточного среды. Деполяризация мембраны обусловлена открытием кальциевых каналов и диффузией ионов кальция в клетку.

Проводимость. Проведение возбуждения по гладкомышечному миоциту непрерывное. Однако изолированно отдельные гладкомышечные клетки не возбуждаются и не сокращаются. Взаимодействие между отдельными миоцитами осуществляется благодаря щелевидным контактам, обладающим низким электрическим сопротивлением. Благодаря этому электрическое поле 1 клетки обеспечивает возбуждение другой. Скорость распространения ПД в пределах пучка составляет 5-10 м/с.

Автоматия присуща клеткам-водителя ритма (пейсмекерам). В ее основе лежит спонтанно возникающая медленная деполяризация – при достижении критического потенциала возникает ПД. Эта деполяризация преимущественно обусловлена диффузией ионов кальция в клетку.

2.Рефлекторная дуга – совокупность структур при помощи которой осуществляется рефлекс. Схематично рефлекторную дугу можно изобразить из 5 звеньев.

1. Воспринимающее звено (рецептор) обеспечивает восприятие изменений внешней и внутренней среды организма посредством трансформации энергии раздражения в рецепторный потенциал .

Рефлексогенная зона – совокупность рецепторов , раздражение которых вызывает рефлекс. При любом раздражении возникают рецепторные потенциалы, обеспечивающие посылку н.и. в ЦНС с помощью 2 звена.

2. Афферентное звено

Роль: передача сигнала в цнс к третьему звену рефлекторной дуги. Для соматической нервной системы - это афферентный нейрон с его отростками, тело его расположено в спинномозговых ганглиях или ганглиях черепных нервов. Импульс по дендриту афферентного нейрона, затем по его аксону, далее в цнс.

3. Управляющее звено – совокупность центральных (для ВНС и ПНС) нейронов, формирующих ответную реакцию организма.

4. Эфферентное звено – аксон эффекторного нейрона (для соматической н.с. мотонейрона ).

5. Эффектор (рабочий орган) эффекторным нейроном соматической н.с. является мотонейрон

Классификация рефлексов

1. По условиям появления рефлексов в онтогенезе

a) Врожденные (безусловные)

b) Приобретенные

Врожденные могут быть соматическими (с помощью сомат. н.с., в качестве эффектора – скелетная мускулатура) и вегетативными (с помощью вегет. н.с.)

2. По биологическому значению

a) Гомеастатические (регуляция функций внутр. органов; работа сердца; секреция и моторика ЖКТ – пищевые рефлексы.)

b) Защитные (оборонительные)

c) Половые

d) ориентировочный рефлекс.

3. В зависимости от числа синапсов

В центральной части рефлекторной дуги различают.

а) моносинаптические (рефлекс на растяжение четырехглавной мышцы - коленный разгибательный рефлекс, при ударе по сухожилию

б) полисинаптические (участвует несколько последовательно включенных нейронов ЦНС

4. по рецепторам , раздражение которых вызывает ответную реакцию.

а) экстероцептивные

б) интероцептивные

в) проприоцептивные ( используются в клинической практике для оценки состояния возбудимости ЦНС и для диагностики.

5. по локализации рефлекторной дуги

А) центральные (дуга через ЦНС)

б) периферические ревлексы (дуга замыкается вне ЦНС)

в ) по отношению к физиологическим системам

ПРИЗНАКИ

ВЕГЕТАТИВНАЯ

СОМАТИЧЕСКАЯ

Органы-мишени    

Гладкие мышцы, миокард, железы, жировая ткань, органы иммунитета

Скелетные мышцы

Ганглии

Паравертебральные, Превертебральные и Органные

Локализованы в ЦНС

Число эфферентных нейронов

Два

Один

Эффект стимуляции

Возбуждающий или Подавляющий

Возбуждающий

Типы нервных волокон

Тонкие миелиновые или немиелиновые, медленные  

миелиновые быстрые