Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen.doc
Скачиваний:
1019
Добавлен:
07.03.2016
Размер:
872.96 Кб
Скачать

19. Регуляция активности генов на примере триптофанового оперона.

Другим типом регуляции работы генов служит негативная репрессия, изученная у E.coU на примере оперона, контролирующего синтез аминокислоты триптофона. Этот оперон состоит из 6700 пар нуклеотидов и содержит 5 структурных генов, ген оператор и два промотора. Ген регулятор обеспечивает постоянный синтез регуляторного белка, который не влияет на работу trp - оперона. При избытке в клетке триптофана последний соединяется с регуляторным белком и изменяет его таким образом, что он связывается с о перо ном и репрессирует синтез соответствующей м-РНК.

20.Негативный и позитивный контроль генетической активности.

Известна также и так называемая позитивная индукция, когда белковый продукт гена—регулятора активирует работу оперона, т.е. является не репрессором, а активатором Деление это условно, и строение акцепторной части оперона, действие гена - регулятора у прокариот весьма разнообразны.

Число структурных генов в опероне у прокариот колеблется от одного до двенадцати; оперон может иметь либо один, либо два промотора и терминатора. Все структурные гены, локализованные в одном опероне, как правило, контролируют систему ферментов, обеспечивающих одну цепь биохимических реакций. Несомненно, что в клетке существуют системы, согласующие регуляцию работы нескольких оперонов.

К первой части акцептора гена - оператора присоединяются белки, активирующие синтез м-РНК, а к концу его — белки - репрессоры, подавляющие синтез м-РНК. Один ген регулируется одним из нескольких белков, каждый из которых прикрепляется к соответствующей точке акцептора. Разные же гены могут иметь общие регуляторы и одинаковые операторные участки. Гены — регуляторы действуют не одновременно. Сначала один включает сразу одну группу генов, затем через некоторое время другой — другую группу, т.е. регуляция активности генов происходит «каскадами», причем белок синтезированный в одной стадии, может быть регулятором синтеза белков следующей стадии.

21.Строение хромосом. Кариотип. Идиограмма. Модели строения хромосом.

.Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков - H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов. В интерфазе хроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Хроматин представляет собой дезоксирибонуклеопротеид, выявляемый под световым микроскопом в виде тонких нитей и гранул. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков H2A, H2B, H3 и H4, образуя структуры, названные нуклеосомами.

В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком H1, называется нуклеофиламентом, или нуклеосомной нитью, диаметром около 10 нм.

Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры. Каждая клетка тела человека содержит в точности 46 хромосом. Хромосомы всегда парны. В клетке всегда имеется по 2 хромосомы каждого вида, пары отличаются друг от друга по длине, форме и наличию утолщений или перетяжек.

Центромера - особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков. Как было доказано многочисленными исследованиями, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию - программу развития клетки, организма, записанную с помощью особого кода. Белки составляют значительную часть вещества хромосом (около 65% массы этих структур). Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования..

Графическое изображение кариотипа, показывающие его структурные особенности, называется идиограммой.

Специфический для определенного вида по числу и структуре набор хромосом получил название кариотипа.

Соседние файлы в предмете Медицинская биология и генетика