
- •Федеральное «агенство по здравоохранению и социальному развитию»
- •Введение
- •Роль нуклеиновых кислот как носителей генетической информации
- •Структура нуклеиновых кислот
- •Репликация днк Полуконсервативный механизм репликации
- •Ферменты репликации
- •Этапы репликации
- •Молекулярная структура генетического материала эукариот Количественные особенности генома эукариот
- •Нуклеотидные последовательности в геноме эукариот
- •Гетерогенность днк эукариот по нуклеотидному составу
- •Число молекул днк в хромосомах эукариот
- •Хроматин и компактизация хромосом
- •Особенности репликации эукариотических хромосом
- •Транскрипция днк
- •Этапы транскрипции
- •Сплайсинг про – иРнк у эукариот
- •Генетический код
- •Трансляция иРнк
- •Особенности и различия про- и эукариотических иРнк
- •Регуляция действия генов
- •Индукция и репрессия генов
- •Модель оперона
- •Лактозный оперон e.Coli
- •Гистидиновый оперон s. Tuphimurium
- •Триптофановый оперон e .Coli
- •Переключение генетической активности во время фаговой инфекции
- •Особенности генетической регуляции у высших эукариот
- •Виды изменчивости
- •Модификационная изменчивость
- •Мутационный процесс
- •Типы мутаций
- •Геномные мутации
- •Структурные мутации хромосом
- •Генные мутации
- •Молекулярный механизм генных мутаций
- •Мутации со сдвигом рамки
- •Обратные мутации и супрессоры
- •Индуцированный мутагенез
- •Мутагенное действие ионизирующих излучений
- •Мутагенное действие ультрафиолетовых лучей
- •Мутагенное действие химических соединений
- •Мутагены, действующие на покоящуюся и реплицирующуюся днк
- •Мутагены, действующие на реплицирующуюся днк
- •Специфичность и направленность индуцированного мутагенеза
- •Мутагенез и репарация днк
- •Дорепликативная репарация
- •Фотореактивация
- •Темновая эксцизионная репарация
- •Пострепликативная репарация (прр)
- •Индуцируемая репарация
- •Спонтанный мутагенез
- •Связь спонтанного мутагенеза с репликацией, репарацией и рекомбинацией днк
- •Гены мутаторы и антимутаторы
- •Мигрирующие генетические элементы (мгэ) и их роль в возникновении спонтанных мутаций. Мутабильные гены.
- •Роль других факторов эндогенного происхождения в спонтанном мутагенезе
- •Проблема специфичности и направленности применительно к спонтанному мутагенезу. Закон гомологических рядов в наследственной изменчивости
- •Прикладное значение мутаций
- •Вопросы для контроля знаний
Пострепликативная репарация (прр)
Этот способ восстановления целостности ДНК заключается в репарации пробелов, образующихся в дочерних цепях напротив не удаленных в ходе репликации димеров. Основная часть таких пробелов репарируется путем рекомбинационных обменов между двумя сестринскими дуплексами. При этом до 50% УФ-индуцированных димеров переносятся из родительской ДНК в дочернюю. В клетках E. coli процесс ПРР контролируется, по крайней мере, 17 генами.
Известны два пути рекомбинационной репарации пострепликативных пробелов в ДНК, совпадающих с путями, осуществляющими у E. coli рекомбинацию между ДНК донора и реципиента при конъюгации, трансформации и трансдукции. Основным является путь RecBC, запасным - путь RecF. Оба они контролируются геном recA. Пробелы в дочерних цепях заполняются в результате рекомбинации, а пробелы в родительских цепях - путем репаративного синтеза, осуществляемого ДНК-полимеразами I либо III. В отсутствие их обеих ресинтез идет под действием ДНК-полимеразы II. Другой путь ПРР использует механизм реципрокной рекомбинации, в результате которой димер оказывается в дочернем дуплексе, а пробел напротив него - в родительском. Этот путь включает: 1) образование двунитевых разрывов вследствие случайных разрывов рядом с димерами в родительских цепях; 2) реципрокные рекомбинационные обмены между двумя сестринскими дуплексами в гомологических областях; 3) завершение рекомбинации с образованием ДНК, свободной от повреждений.
Оба типа рекомбинационной репарации ДНК осуществляются ферментами, действующими конститутивно, и в зависимости от вида бактерий репарируют от 30 до 100% пострепликативных пробелов.
Индуцируемая репарация
SOS-репарация. М. Радман (1974) и Э. Виткин (1975) первыми указали на возможную взаимосвязь нескольких феноменов, наблюдаемых в УФ-облученных клетках E. coli. К ним относятся: 1) индукция профага - процесс, требующий инактивации репрессора; 2) феномен W-реактивации, открытый Дж. Вейглем (1953) и выражающийся в повышении выживаемости и мутабильности УФ-облученного фага при заражении им предварительно облученных клеток E. coli по сравнению с выживаемостью фага в необлученных клетках; 3) образование длинных нитей (филаментов) неразделившихся бактерий вследствие блокирования нормального процесса клеточного деления в облученных клетках; 4) выключение клеточного дыхания; 5) индукция мутагенеза, и ряд других.
Способность клетки реагировать на повреждения ДНК или прекращение ее синтеза путем активации группы генов, контролирующих перечисленные выше феномены, получила название SOS-ответа. Одна из форм SOS-ответа - SOS-репарация ДНК. Помимо УФ-облучения сигналами на включение SOS-репарации могут служить и другие воздействия, повреждающие ДНК.
В случае УФ-облучения индукция SOS-репарации у E. coli происходит тогда, когда в геноме находится не менее 30-60 невырезанных димеров. Возникающая задержка репликации, по-видимому, активирует группу генов, продукты которых обеспечивают SOS-репарацию ДНК. Ее характерная черта - неточность восстановления первичной структуры ДНК, поэтому такой тип репарации называют “склонной к ошибкам” в отличие от относительно безошибочной эксцизионной репарации.
По мнению ряда исследователей, в основе SOS-репарации лежит индукция новой или модификация одной из предсуществующих ДНК-полимераз, обеспечивающих возможность “трансдимерного” синтеза ДНК, в результате которого напротив димера будет находиться не брешь, а какой-то нуклеотид. Такая произвольная подстановка нуклеотида во вновь образующуюся нить может привести к мутации. Прямые доказательства этой гипотезы отсутствуют, однако существование мутагенной репарации выявлено у фага Т4 и грибов, различных видов дрожжей, у D. melanogaster. Обнаружена она и у млекопитающих, для которых установлено, что пострепликативные бреши действительно могут заполняться за счет синтеза ДНК, а не в результате рекомбинации. Примечательно, что в отличие от конститутивной безошибочной эксцизионной репарации SOS-репарация сопряжена с синтезом белка de novo и происходит в богатой питательной среде. Это соответствует условиям, ведущим к фиксации мутаций в УФ-облученных клетках E. coli.
Общее свойство всех SOS-ответов у E. coli - их абсолютная зависимость от активности генов recA и lexA. Первый из них кодирует синтез белка-индуктора SOS-системы, второй - белка-репрессора гена recA и ряда других генов, кодирующих SOS-функции. Продукт гена recA - RecA-белок- полипептид (Мr 37 842), обладающий несколькими формами ферментативной активности. Главная для регуляции SOS-ответа - протеолитическая: RecA расщепляет или стимулирует аутопереваривание белка LexA и репрессоров генов ряда SOS-функций, например репрессора фага , поддерживающего его в состоянии профага. Помимо протеазной активности RecA-белок обладает еще и АТФ-азной и хеликазной формами активности, важными для его участия в процессах рекомбинации и рекомбинационной ПРР ДНК. При отсутствии индуцирующих воздействий исходный сравнительно низкий уровень белка RecA в клетках E. coli составляет 800-1200 молекул на клетку. Однако в условиях индукции SOS-системы синтез белка RecA резко усиливается и может достигнуть 30% от общего содержания белка в клетке. Другой важнейший для функционирования SOS-системы ген - lexA, - кодирует белок с Мr 22 700.
Ключевую роль в регуляции SOS-системы играет взаимодействие белков RecA и LexA. В интактной клетке исходный уровень белка RecA обеспечивает рекомбинацию, но его недостаточно для индукции SOS-функций. В неповрежденной клетке возможность избыточной продукции белка RecA подавлена (репрессирована) белком LexA. Повреждения ДНК активируют RecA-протеазу, переваривающую LexA-репрессор. Это, в свою очередь, приводит к индукции других генов SOS-системы, репрессоры которых также расщепляются белком RecA. По мере того как количество молекул RecA-протеазы исчерпывается, вновь синтезируется интактный LexA-репрессор и вся SOS-система выключается. Из этой модели следует, что SOS-система является саморегулирующейся, причем белок RecA ее позитивный, а белок LexA - негативный регулятор. Таким образом, SOS-ответ клетки складывается из следующих этапов: индуцирующий сигнал, синтез RecA-белка и его активация, разрушение репрессоров и индукция SOS-функций.
По мере репарации ДНК факторы, индуцирующие SOS-ответ, элиминируются и в течение 30-60 мин после индуцирующего воздействия RecA-протеаза инактивируется. Синтез белка LexA, однако, продолжается и, так как теперь ничто не мешает его функционированию, происходит репрессия генов SOS-системы. Клетка возвращается в неиндуцированное состояние.
Из почти 20 генов, контролирующих SOS-функции клетки у E. coli, для мутагенеза существенны лишь гены recA, lexA и состоящий из двух генов оперон umuDC. Мутации в любом из генов этого оперона подавляют мутагенез, индуцированный УФ-лучами, метилметансульфонатом и другими видами воздействия. В случае повреждения ДНК RecA-протеаза расщепляет репрессор оперона umuDC и последний начинает функционировать. Предполагается, что продукты, кодируемые генами umuDC, каким-то образом модифицируют клеточные ДНК-полимеразы, в результате чего они осуществляют синтез ДНК в обход димеров пиримидина.
Адаптивный ответ. Помимо SOS-репарации в клетках E. coli действует еще один путь индуцируемой репарации ДНК, называемый адаптивным ответом на действие алкилирующих агентов. В отличие от SOS-репарации адаптивный ответ recA - независим. Адаптивный ответ наблюдается в случае, если клетки до обработки основной, большой, дозой алкилирующих агентов (например, нитрозогуанидина либо N-метил-N-нитрозомочевины) подвергаются воздействию очень низких, нелетальных доз тех же соединений. Предобработка бактерий низкими дозами алкилирующих агентов обусловливает индукцию ферментов репарации, специфично действующих на алкилирование ДНК. Один из этих ферментов - индуцируемая О6-метилгуанин-ДНК-метилтрансфераза - переносит метильную группу с О6-метилгуанина (основного предмутационного повреждения в алкилированной ДНК) на остаток цистеина, входящий в состав самого фермента, и тем самым непосредственно исправляет повреждение ДНК. Другой фермент - индуцируемая ДНК-гликозилаза - удаляет ряд потенциально летальных повреждений в ДНК, включая 3-метиладенин, 3-метилгуанин и др.
Системы индуцируемой репарации ДНК действуют не только у прокариот, но и эукариот. Так, гены, функционально близкие к генам, контролирующим SOS-функции у E. coli, обнаружены у дрожжей. Индукция ферментов, приводящих к снижению мутагенного эффекта и увеличению выживаемости в случае предобработки малыми дозами алкилирующих агентов, описана у крыс. У млекопитающих известны и другие индуцируемые ферменты, связанные с повреждениями ДНК. Однако обнаружить индуцируемую систему репарации ДНК, приводящей к увеличению клеточного мутагенеза у млекопитающих, пока не удалось.