
- •4. Физиология и патология гипофиза. Гигантизм, карликовость, акромегалия несахарный диабет.
- •5.Вилочковая железа, ее значение в имунной защите организма.
- •6.Физиолгия и патология щитовидной железы.Роль гормонов щитовидной железы в физиологическом и патологическом развитии ребенка. Кретенизм, микседема, базедова болезнь.
- •7. Эпифиз. Гормоны эпифиза, их значение.
- •9. Надпочечники. Гормоны мозгового и коркового слоя надпочечников, их роль в в адаптации арганизма при действии стрессовых факторов.
- •10. Физиология и патология поджелудочной железы. Регуляция углеводного обмена в норме и патологии. Сахарный диабет и его профилактика.
- •12. Морфологический и химический состав крови. Значение крови.
- •13. Иммунитет, его виды. Механизмы неспецифического и специфического иммунитета.
- •15. Эритроциты, особенности строения и значения. Группы крови, их характериристики. Понятие о резус-факторе и резус-конфликте.
- •16.Лейкоциты, особенности строения и значения. Виды лейкоцитов. Лейкоцитарная формула. Изменение лейкоцитарной формулы при заболеваниях.
- •18. Фазы работы сердца. Систолический и минутный объем крови.
- •19. Проводящая система сердца. Узлы проводящей системы сердца, их значение.
- •20. Свойства сердедечной мышцы. Электрокардиограмма, характеристика ее зубцов и отрезков. Регуляция работы сердца.
- •21. Понятие дыхания, его значение. Этапы дыхания.
- •22. Механизм газообмена в легких и тканях.
- •24. Нарушение функций организма при гопоксии.
- •25. Компенсаторные механизмы при гипоксии.
- •26. Белковый обмен и его регуляция.
- •27. Углеводный и жировой обмены, их регуляция.
- •28. Обмен воды и минеральных солей, его регуляция.
- •29. Выделительная система человека. Нефрон – основная структурная и функциональная единица почек. Фазы мочеобразования.
- •30. Нервная и гуморальная регуляция деятельности почек.
- •31. Понятие о терморегуляции. Химическая и физическая терморегуляция.
- •32. Опорно-двигательный аппарат. Его значение. Химический состав косте. Строение скелета человека.
- •33. Типы соединения костей. Строение суставов.
- •34. Мышечная система. Основные группы мышц человека. Статистическая и динамическая работа мышц. Роль мышечных движений в развитии организма. Понятие осанки. Профилактика нарушений осанки.
- •35. Определение понятия бользни и здоровья. Патологический процесс и патологическое состояние – причина дефективности и инвалидности.
- •36.Врождённые пороки развития,причины. Виды впр и их профилактика.
- •38.Причины и условия возникновения болезни. Болезнетворные факторы внешней среды: механические, физические, химические, биологические, социальные.
- •41.Расстройства кровообращения и микроциркуляции при воспалении
- •42.Патологические изменения состава крови:морфологического,химического,рН,свертываемости,соэ.
- •45.Лейкозы
- •48.Пороки сердца,причины,профилактика.
- •49. Местные расстройства кровообращения: артериальная и венозная гиперемия, ишемия, тромбоз, эмболия.
- •50 Проявления нарушений внешнего дыхания: апноэ, брадипноэ, тахипноэ, одышка, виды периодического, патологического дыхания.
- •51 Основные причины и виды нарушений пищеварения.
- •56.Нарушение водно-солевого обмена
- •57.Основные причины нарушений системы мочеобразования. Почечная недостаточность: острая и хроническая формы.
- •58.Патология терморегуляции. Гипо- и гипертермия, их стадии
- •59.Лихорадка, ее стадии и виды. Приспособительное и компенсаторное значение лихорадки.
- •60.Нарушения ода. Деформация черепа,позвоночника,конечностей. Профилактика этих нарушений.
- •63 Общая характеристика опухолей
- •64Формы роста опухолей
- •65. Характеристика доброкачественных и злокачественных опухолей.
- •66.Этиология и патогенез опухолей.
- •67. Реактивность организма,её виды и значение в патологии.
- •68. Механизмы восстановления нарушенных функций организма. Понятие о компенсации функций, структурно-функциональные основы компенсации.
22. Механизм газообмена в легких и тканях.
Газообмен в легких и тканях.
В легких происходит газообмен между поступающим в альвеолы воздухом и протекающей по капиллярам кровью. Интенсивному газообмену между воздухом альвеол и кровью способствует малая толщина так называемого аэрогематического барьера. Он образован стенками альвеолы и кровеносного капилляра. Толщина барьера – около 2,5 мкм. Стенки альвеол построены из однослойного плоского эпителия, покрытого изнутри тонкой пленкой фосфолипида – сурфактантом, который препятствует сли- панию альвеол при выдохе и понижает поверхностное натяжение.
Альвеолы оплетены густой сетью кровеносных капилляров, что сильно увеличивает площадь, на которой совершается газообмен между воздухом и кровью.
При вдохе концентрация (парциальное давление) кислорода в альвеолах намного выше (100 мм рт. ст.), чем в венозной крови (40 мм рт. ст.)протекающей по легочным капиллярам. Поэтому кислород легко выходит
из альвеол в кровь, где он быстро вступает в соединение с гемоглобином эритроцитов. Одновременно углекислый газ, концентрация которого в венозной крови капилляров высокая (47 мм рт. ст.), диффундирует в альвеолы, где его парциальное давление ниже (40 мм рт. ст.). Из альвеол легкого углекислый газ выводится с выдыхаемым воздухом.
Таким образом, разница в давлении (напряжение) кислорода и углекислого газа в альвеолярном воздухе, в артериальной и венозной крови дает возможность кислороду диффундировать из альвеол в кровь, а угле-
кислому газу из крови в альвеолы.
Благодаря особому свойству гемоглобина вступать в соединение с кислородом и углекислым газом кровь способна поглощать эти газы в значительном количестве. В 1000 мл артериальной крови содержится до
20 мл кислорода и до 52 мл углекислого газа. Одна молекула гемоглобина способна присоединить к себе 4 молекулы кислорода, образуя неустойчивое соединение – оксигемоглобин.
В тканях организма в результате непрерывного обмена веществ и интенсивных окислительных процессов расходуется кислород и образуется углекислый газ. При поступлении крови в ткани организма гемоглобин отдает клеткам и тканям кислород. Образовавшийся при обмене веществ углекислый газ переходит из тканей в кровь и присоединяется к гемоглобину. При этом образуется непрочное соединение – карбогемоглобин. Быстрому соединению гемоглобина с углекислым газом способствует находящийся в эритроцитах фермент карбоангидраза.
Гемоглобин эритроцитов способен соединяться и с другими газами,например, с окисью углерода, при этом образуется довольно прочное соединение карбоксигемоглобин.
Недостаточное поступление кислорода в ткани (гипоксия) может возникнуть при недостатке его во вдыхаемом воздухе. Анемия – уменьшение содержания гемоглобина в крови – появляется, когда кровь не может переносить кислород.
При остановке, прекращении дыхания развивается удушье (асфиксия). Такое состояние может случиться при утоплении или других неожиданных обстоятельствах. При остановке дыхания, когда сердце еще про-
должает работать, делают искусственное дыхание с помощью специальных аппаратов, а при их отсутствии – по методу «рот в рот», «рот в нос»или путем сдавливания и расширения грудной клетки.
23. ПОНЯТИЕ О ГИПОКСИИ. ОСТРЫЕ И ХРОНИЧЕСКИЕ ФОРМЫ. ВИДЫ ГИПОКСИЙ.
Одним из обязательных условий жизни организма является непрерывное образование и потребление им энергии. Она расходуется на обеспечение метаболизма, на сохранение и обновление структурных элементов органов и тканей, а также на осуществление их функции. Недостаток энергии в организме приводит к существенным нарушениям обмена веществ, морфологическим изменениям и нарушениям функций, а нередко — к гибели органа и даже организма. В основе дефицита энергии лежит гипоксия.
Гипоксия — типовой патологический процесс, характеризующийся как правило снижением содержания кислорода в клетках и тканях. Развивается в результате недостаточности биологического окисления и является основой нарушений энергетического обеспечения функций и синтетических процессов организма.
типы гипоксии
В зависимости от причин и особенностей механизмов развития выделяют следующие типы:
1.Экзогенный:
гипобарический;
нормобарический.
Респираторный (дыхательный).
Циркуляторный (сердечно-сосудистый).
Гемический (кровяной).
Тканевый (первично-тканевый).
Перегрузочный (гипоксия нагрузки).
Субстратный.
Смешанный.
В зависимости от распространенности в организме гипоксия может быть общей или местной (при ишемии, стазе или венозной гиперемии отдельных органов и тканей).
В зависимости от тяжести течения выделяют легкую, умеренную, тяжелую и критическую гипоксию, чреватую гибелью организма.
В зависимости от скорости возникновения и длительности течения гипоксия может быть:
молниеносной — возникает в течение нескольких десятков секунд и нередко завершается смертью;
острой — возникает в течение нескольких минут и может длиться несколько суток:
хронической — возникает медленно, длится несколько недель, месяцев, лет.
Характеристика отдельных типов гипоксии
Экзогенный тип
Причина: уменьшение парциального давления кислорода Р02 во вдыхаемом воздухе, что наблюдается при высоком подъеме в горы ("горная" болезнь) или при разгерметизации летательных аппаратов ("высотная" болезнь), а также при нахождении людей в замкнутых помещениях малого объема, при работах в шахтах, колодцах, в подводных лодках.
Основные патогенные факторы:
гипоксемия (снижение содержания кислорода в крови);
гипокапния (снижение содержания С02), которая развивается в результате увеличения частоты и глубины дыханий и приводит к снижению возбудимости дыхательного и сердечно-сосудистого центров головного мозга, что усугубляет гипоксию.
Респираторный (дыхательный) тип
Причина: недостаточность газообмена в легких при дыхании, что может быть обусловлено снижением альвеолярной вентиля-
ции или затруднением диффузии кислорода в легких и может наблюдаться при эмфиземе легких, пневмое. Основные патогенные факторы:
артериальная гипоксемия. например при пневмое, гипертонии малого круга кровообращения и др.;
гиперкапния, т. е. увеличение содержания С02;
гипоксемия и гиперкапния характерны и для асфиксии — удушения (прекращения дыхания).
Циркуляторный (сердечно-сосудистый) тип
Причина: нарушение кровообращения, приводящее к недостаточному кровоснабжению органов и тканей, что наблюдается при массивной кровопотере, обезвоживании организма, нарушениях функции сердца и сосудов, аллергических реакциях, нарушениях электролитного баланса и др.
Основной патогенетический фактор — гипоксемия венозной крови, так как в связи с ее медленным протеканием в капиллярах происходит интенсивное поглощение кислорода, сочетающееся с увеличением артериовенозной разницы по кислороду.
Гемический (кровяной) тип
Причина: снижение эффективной кислородной емкости крови. Наблюдается при анемиях, нарушении способности гемоглобина связывать, транспортировать и отдавать кислород в тканях (например, при отравлении угарным газом или при гипербарической оксигенации).
Основной патогенетический фактор — снижение объемного содержания кислорода в артериальной крови, а также падение напряжения и содержания кислорода в венозной крови.
Тканевый тип
Причины:
•нарушение способности клеток поглощать кислород;
•уменьшение эффективности биологического окисления в результате разобщения окисления и фосфорилирования. Развивается при угнетении ферментов биологического окисления, например при отравлении цианидами, воздействии ионизирующего излучения и др.
Основное патогенетическое звено — недостаточность биологического окисления и как следствие дефицит энергии в клетках. При этом отмечаются нормальное содержание и напряжение кислорода в артериальной крови, повышение их в венозной крови, снижение артериовенозной разницы по кислороду.
Перегрузочный тип
Причина: чрезмерная или длительная гиперфункция какого-либо органа или ткани. Чаще это наблюдается при тяжелой физической работе.
Основные патогенетические звенья:значительная венозная гипоксемия;гиперкапния.
Субстратный тип
Причина: первичный дефицит субстратов окисления, как правило, глюкозы. Так. прекращение поступления глюкозы в головной мозг уже через 5—8 мин ведет к дистрофическим изменениям и гибели нейронов.
Основной патогенетический фактор — дефицит энергии в форме АТФ и недостаточное энергоснабжение клеток.
Смешанный тип
Причина: действие факторов, обусловливающих включение различных типов гипоксии. По существу любая тяжелая гипоксия, особенно длительно текущая, является смешанной.
Морфология гипоксии
Гипоксия является важнейшим звеном очень многих патологических процессов и болезней, а развиваясь в финале любых заболеваний, она накладывает свой отпечаток на картину болезни. Однако течение гипоксии может быть различным, и поэтому как острая, так и хроническая гипоксия имеют свои морфологические особенности.
Острая гипоксия, которая характеризуется быстрым нарушениями в тканях окислительно-восстановительных процессов, нарастанием гликолиза, закислением цитоплазмы клеток и внеклеточного матрикса, приводит к повышению проницаемости мембран лизосом, выходу гидролаз, разрушающих внутриклеточные структуры. Кроме того, гипоксия активирует перекисное окисление липидов. появляются свободнорадикальные перекисные соединения, которые разрушают мембраны клеток. В физиологических условиях в процессе обмена веществ постоянно возникает
легкая степень гипоксии клеток, стромы, стенок капилляров и артериол. Это является сигналом к повышению проницаемости стенок сосудов и поступлению в клетки продуктов метаболизма и кислорода. Поэтому острая гипоксия, возникающая в условиях патологии, всегда характеризуется повышением проницаемости стенок артериол, венул и капилляров, что сопровождается плаз-моррагией и развитием периваскулярных отеков. Резко выраженная и относительно длительная гипоксия приводит к развитию фибриноидного некроза стенок сосудов. В таких сосудах кровоток прекращается, что усиливает ишемию стенки и происходит диапедез эритроцитов с развитием периваскулярных кровоизлияний. Поэтому, например, при острой сердечной недостаточности, которая характеризуется быстрым развитием гипоксии, плазма крови из легочных капилляров поступает в альвеолы и возникает острый отек легких. Острая гипоксия мозга приводит к перива-скулярному отеку и набуханию ткани мозга с вклинением его стволовой части в большое затылочное отверстие и развитием комы, приводящей к смерти.
Хроническая гипоксия сопровождается долговременной перестройкой обмена веществ, включением комплекса компенсаторных и приспособительных реакций, например гиперплазией костного мозга для увеличения образования эритроцитов. В паренхиматозных органах развивается и прогрессирует жировая дистрофия и атрофия. Кроме того, гипоксия стимулирует в организме фибробластическую реакцию, активизируются фибробласты, в результате чего параллельно с атрофией функциональной ткани нарастают склеротические изменения органов. На определенном этапе развития заболевания изменения, обусловленные гипоксией, способствуют снижению функции органов и тканей с развитием их декомпенсации.