Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ на Экзамен / УПЭЭС / Глава3нов..doc
Скачиваний:
92
Добавлен:
06.03.2016
Размер:
1.17 Mб
Скачать

3.8. Применение методов имитационного моделирования

При имитационном моделировании результат нельзя заранее вычислить или предсказать. Поэтому для предсказания поведения сложной системы (электроэнергетической, СЭС крупного производственного объекта и т.п.) необходим эксперимент, имитация на модели при заданных исходных данных.

Имитационное моделирование сложных систем используется при решении следующих задач.

  1. Если не существует законченной постановки задачи исследования и идёт процесс познания объекта моделирования.

  2. Если аналитические методы имеются, но математические процедуры столь сложны и трудоемки, что имитационное моделирование даёт более простой способ решения задачи.

  3. Когда кроме оценки параметров сложных систем желательно осуществить наблюдение за поведением их компонент в течение определённого периода.

  4. Когда имитационное моделирование является единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях.

  5. Когда необходимо контролировать протекание процессов в сложной системе путём ускорения или замедления явлений в ходе имитации.

  6. При подготовке специалистов и освоении новой техники.

  7. Когда изучаются новые ситуации в сложных системах, о которых мало известно или ничего неизвестно.

  8. Тогда особое значение имеет последовательность событий в проектируемой сложной системе и модель используется для предсказания «узких мест» функционирования системы.

Создание имитационной модели сложной системы начинается с постановки задачи. Но часто заказчик формулирует задачу недостаточно чётко. Поэтому работа обычно начинается с поискового изучения системы. Это порождает новую информацию, касающуюся ограничений, задач и возможных альтернативных вариантов. В результате возникают следующие этапы:

- составление содержательного описания системы;

- выбор показателей качества;

- определение управляющих переменных;

- детализация описания режимов функционирования.

Основу имитационного моделирования составляет метод статистического моделирования (метод Монте-Карло). Это численный метод решения математических задач при помощи моделирования случайных величин. Датой рождения этого метода принято считать 1949 г. Создатели его – американские математики Л. Нейман и С. Улам. Первые статьи о методе Монте-Карло у нас были опубликованы в 1955 г. Однако до появления ЭВМ этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную – очень трудоемкая работа. Название метода происходит от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что одним из простейших механических приборов для получения случайных величин является рулетка.

Рассмотрим классический пример. Нужно вычислить площадь произвольной плоской фигуры . Граница ее может быть криволинейной, заданной графически или аналитически, состоящей из нескольких кусков. Пусть это будет фигура рис. 3.20. Допустим, что вся фигура расположена внутри единичного квадрата. Выберем в квадрате случайных точек. Обозначим черезчисло точек, попавших внутрь фигуры. Геометрически очевидно, что площадьприближённо равна отношению. Чем больше, тем больше точность оценки.

Р

1

S

ис.3.20.
Иллюстрация примера

В нашем примере ,(внутри). Отсюда. Истинная площадь может быть легко подсчитана и составляет 0,25.

Метод Монте-Карло имеет две особенности.

Первая особенность – простота вычислительного алгоритма. В программе для вычислений необходимо предусмотреть, что для осуществления одного случайного события надо выбрать случайную точку и проверить, принадлежит ли она . Затем это испытание повторяетсяраз, причем каждый опыт не зависит от остальных, а результаты всех опытов усредняются. Поэтому метод и называют – метод статистических испытаний.

Вторая особенность метода: ошибка вычислений, как правило, пропорциональна

,

где – некоторая постоянная;– число испытаний.

Из этой формулы видно, что для того, чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить (объём испытаний) в 100 раз.

Замечание. Метод вычисления справедлив только тогда, когда случайные точки будут не просто случайными, а еще и равномерно распределёнными.

Использование имитационного моделирования (в том числе метода Монте-Карло и его модификаций) для расчёта надёжности сложных технических систем основано на том, что процесс их функционирования представляется математической вероятностной моделью, отражающей в реальном масштабе времени все события (отказы, восстановления), происходящие в системе.

С помощью такой модели на ЭВМ многократно моделируется процесс функционирования системы и по полученным результатам определяются искомые статистические характеристики этого процесса, являющиеся показателями надёжности. Применение методов имитационного моделирования позволяет учитывать зависимые отказы, произвольные законы распределения случайных величин и другие факторы, влияющие на надёжность.

Однако эти методы, как и любые другие численные методы, дают лишь частное решение поставленной задачи, соответствующее конкретным (частным) исходным данным, не позволяя получить показатели надёжности в функции времени. Поэтому для проведения всестороннего анализа надёжности приходится многократно моделировать процесс функционирования системы с разными исходными данными.

В нашем случае это, прежде всего, различная структура электрической системы, различные значения вероятностей отказа и длительностей безотказной работы, которые могут изменяться в процессе эксплуатации системы, и другие показатели функционирования.

Процесс функционирования электрической системы (или электротехнической установки) представляется как поток случайных событий – изменений состояния, происходящих в случайные моменты времени. Изменение состояний ЭЭС вызывается отказами и восстановлениями составляющих ее элементов [11].

Рассмотрим схематическое изображение процесса функционирования ЭЭС, состоящей из элементов (рис. 3.21), где приняты следующие обозначения:

–момент -го отказа-го элемента;

–момент -го восстановления-го элемента;

–интервал времени безотказной работы -го элемента после-го восстановления;

–продолжительность восстановления -го элемента после-го отказа;

i-е состояние ЭЭС в момент времени .

Величины , связаны между собой соотношениями:

(3.20)

Отказы и восстановления происходят в случайные моменты времени. Поэтому интервалы иможно рассматривать как реализации непрерывных случайных величин:– наработок между отказами,– времени восстановления-го элемента.

Поток событий описывается моментами их наступления.

Моделирование процесса функционирования состоит в том, что моделируются моменты изменения состояния ЭЭС в соответствии с заданными законами распределения наработок между отказами и времени восстановления составляющих элементов на интервале времени Т (между ППР).

Возможны два подхода к моделированию функционирования ЭЭС.

При первом подходе необходимо сначала для каждого -гo элемента системыопределить, в соответствии с заданными законами распределения наработок между отказами и временами восстановления, интервалы времениии вычислить по формулам (3.20) моменты его отказов и восстановлений, которые могут произойти за весь исследуемый периодфункционирования ЭЭС. После этого можно расположить моменты отказов и восстановлений элементов, являющиеся моментами изменения состояний ЭЭС, в порядке их возрастания, как показано на рис.3.21.

Рис.3.21. Состояния ЭЭС

Затем следует анализ полученных путем моделирования состояний Аi системы на принадлежность их к области работоспособных или неработоспособных состояний. При таком подходе в памяти ЭВМ необходимо фиксировать все моменты отказов и восстановлений всех элементов ЭЭС.

Более удобным является второй подход, при котором для всех элементов сначала моделируются только моменты первого их отказа. По минимальному из них формируется первый переход ЭЭС в другое состояние (из А0 в Аi) и одновременно проверяется принадлежность полученного состояния к области работоспособных или неработоспособных состояний.

Затем моделируется и фиксируется момент времени восстановления и следующего отказа того элемента, который вызвал изменение предыдущего состояния ЭЭС. Снова определяется наименьший из моментов времени первых отказов и этого второго отказа элементов, формируется и анализируется второе состояние ЭЭС – и т.д.

Такой подход к моделированию в большей мере соответствует процессу функционирования реальной ЭЭС, так как позволяет учесть зависимые события. При первом подходе обязательно предполагается независимость функционирования элементов ЭЭС. Время счёта показателей надёжности методом имитационного моделирования зависит от полного числа опытов , числа рассматриваемых состояний ЭЭС, числа элементов в ней. Итак, если сформированное состояние окажется состоянием отказа ЭЭС, то фиксируется момент отказа ЭЭС и вычисляетсяинтервал времени безотказной работы ЭЭС от момента восстановления после предыдущего отказа. Анализ сформированных состояний производится на протяжении всего рассматриваемого интервала времениТ.

Программа расчёта показателей надёжности состоит из главной части и отдельных логически самостоятельных блоков-подпрограмм. В главной части в соответствии с общей логической последовательностью расчёта происходят обращения к подпрограммам специального назначения, расчёт показателей надёжности по известным формулам и выдача результатов расчёта на печать.

Рассмотрим упрощенную блок-схему, демонстрирующую последовательность работы по расчёту показателей надёжности ЭЭС методом имитационного моделирования (рис. 3.22).

Подпрограммы специального назначения осуществляют: ввод исходной информации; моделирование моментов отказов и восстановлений элементов в соответствии с законами распределения их наработки и времени воcстановления; определение минимальных значений моментов отказов и моментов восстановлений элементов и идентификацию элементов, ответственных за эти значения; моделирование процесса функционирования ЭЭС на интервале [0, T] и анализ сформированных состояний.

При таком построении программы можно, не затрагивая общую логику программы, вносить необходимые изменения и дополнения, связанные, например, с изменением возможных законов распределения наработки и времени восстановления элементов.

Рис.3.22. Блок-схема алгоритма расчёта показателей надежности методом имитационного моделирования

121

Соседние файлы в папке УПЭЭС