
- •1 Конструкция теплообменных аппаратов
- •1.1 Классификация теплообменных аппаратов и предъявляемые к ним требования
- •1.2 Кожухотрубчатые теплообменные аппараты, типы и конструктивное исполнение
- •1.2.1 Кожухи и распределительные камеры
- •1.3 Аппараты воздушного охлаждения
- •1.4 Теплообменные аппараты типа -«труба в трубе»
- •1.5 Погружные аппараты
- •1.6 Оросительные аппараты
- •1.7 Пластинчатые теплообменники
- •1, 9, 10 И 12 — штуцера; 2 — неподвижная плита; 3 — штанга; 4 — теплообменная пластин 5 и 6 — прокладки; 7 — стойка; 8 — винт; 11 — нажимная плита; а, б, в и г — проходные отверстия
- •1.8 Спиральные теплообменные аппараты
- •2 Технологический расчет оборудования
- •2.1 Теплотехнический расчет теплообменных аппаратов
- •2.2 Тепловые балансы теплообменных аппаратов
- •2.3 Средняя разность температур теплоносителей
- •2.4 Коэффициенты теплоотдачи и теплопередачи
- •2.5 Теплопередача в поверхностных теплообменниках
- •2.6 Последовательность расчета и подбора кожухотрубчатого теплообменника
- •2.7 Гидравлический расчет кожухотрубчатых теплообменных аппаратов
- •2.7.1 Расчет потери давления в трубном пространстве
- •2.7.2 Расчет потери давления в межтрубном пространстве
- •3 Механический расчёт теплообменника
- •Литература
- •Приложение
- •Редактор л.А.Матвеева
- •450062, Г. Уфа, ул. Космонавтов, 1.
- •453118, Г.Стерлитамак, пр. Октября, 2.
2.5 Теплопередача в поверхностных теплообменниках
Количество теплоты, переданной в единицу времени от горячего теплоносителя к холодному через разделяющую их стенку поверхностью F можно определить из основного уравнения теплопередачи
Q = K.F.tср, Вт. (17)
Уравнение (1.17) применяется для расчета необходимой площади поверхности теплопередачи при известных значениях тепловой нагрузки теплообменного аппарата Q, средней разности температур теплоносителей tср и коэффициента теплопередачи К
,
м2 (18)
По рассчитанной площади поверхности теплопередачи в зависимости от назначения подбирается теплообменный аппарат по ГОСТам: 15118-79, 15119-79, 15121-79, 15120-79, 15122-79, 14245-79, 14246-79, 14247-79, 14248-79 (параметры аппаратов в соответствии с указанными ГОСТами приведены в таблицах III – VII приложения. В приложении приведены также диаметры условного прохода штуцеров (таблица VIII, число сегментных перегородок (таблица IX) и масса кожухотрубчатых теплообменных аппаратов (таблица X)). ГОСТы на теплообменные аппараты других типов приведены в [4].
2.6 Последовательность расчета и подбора кожухотрубчатого теплообменника
Рассмотрим последовательность расчета и подбора кожухотрубчатого теплообменного аппарата для нагрева органической жидкости от начальной t2н до конечной t2к температуры при расходе жидкости G2 (кг/с).
В качестве горячего теплоносителя выбираем насыщенный водяной пар давлением Р (МПа) при степени сухости х.
По таблице 1 принимаем тип аппарата, выбираем материал труб – сталь; аппарат вертикальный. Нагреваемая жидкость подается в трубы, пар – в межтрубное пространство.
По таблицам теплофизических свойств нагреваемой жидкости при t2ср = 0,5.( t2н+ t2к ) определяем плотность 2 (кг/м3), теплоемкость С2 (кДж/(кг.град)), вязкость 2 (Па.с), теплопроводность 2 (Вт/(м2.град)) [1].
По таблице I приложения по давлению Р (МПа) определяем температуру насыщения пара t1н = t1к = ts и удельную теплоту конденсации r (кДж/кг).
По таблице теплофизических свойств воды на линии насыщения (таблица II приложения) при ts определяем свойства конденсата: плотность (кг/м3), теплопроводность (Вт/(м.град)), вязкость (Па.с) [1].
Расчет кожухотрубчатого аппарата проводится следующим образом:
1 Определяем тепловую нагрузку аппарата
Q2 = G2 . C2 . ( t2к – t2н), кВт;
2 По уравнению теплового баланса (6) определяем расход насыщенного водяного пара
,
кг/с;
3 При теплообмене между теплоносителями насыщенный водяной пар конденсируется при постоянной температуре ts; поэтому схема движения теплоносителей не влияет на величину средней разности температур. tср определяем либо по уравнению (10), либо (11). Расчетная схема для определения tб и tм изображена на рисунке 31 d.
4 По таблице 3 принимаем ориентировочное значение коэффициента теплопередачи Кор с учетом вида теплоносителей и характера их движения (в данном примере – от конденсирующегося водяного пара к органической жидкости при ее вынужденном движении);
5 По уравнению (18) рассчитываем ориентировочную площадь поверхности нагрева
,
м2;
6 Принимаем диаметр труб (202,0 мм или 252,0 мм; первая цифра обозначает наружный диаметр трубы dн, вторая – толщину стенки . Тогда внутренний диаметр трубы dвн = dн – 2., мм) и длину труб l (l = 2,0; 3,0; 4,0; 6,0 м в соответствии с ГОСТом на принятый к расчету аппарат.
7 Определяем общее число труб аппаратов, шт
;
8 Число труб n1 (шт) на один ход определяем из условия турбулентного режима движения жидкости (Re = 10 000 – 20 000). Например, ориентировочно принимаем Re2 ор = 15 000. Тогда
;
9 Рассчитываем число ходов трубного пространства аппарата
;
10 По рассчитанным величинам Fор, n, z и выбранным размерам труб (dвн и l) в соответствии с ГОСТом подбираем аппарат с наиболее близкими параметрами: Fнорм, м2; n; z;
11 Проводим проверку выбранного аппарата, определив коэффициенты теплоотдачи со стороны конденсирующегося водяного пара (1) и нагреваемой жидкости (2) по критериальным уравнениям соответствующего вида и коэффициент теплопередачи К по уравнению (14);
12 Уточняем поверхность теплопередачи (Fрасч, м2) по уравнению
;
13 Определяем запас поверхности нагрева , %
.
Если запас поверхности нагрева достаточен, то аппарат выбран правильно. В противном случае расчет повторяют, приняв другой режим движения, размеры труб и др.
При выполнении расчета (пункт 10) может оказаться, что для заданных исходных величин подходят несколько нормализованных аппаратов. В этом случае необходимо проверить возможность применения каждого из них. Сопоставление конкурентно-способных аппаратов проводят с учетом их массы (таблица X приложения) и гидравлического сопротивления.