
- •Введение
- •Условные обозначения, используемые в пособии
- •Графические символы
- •Соглашения по синтаксису командного языка
- •1 Проектирование масштабируемых сетей передачи данных
- •1.1 Масштабируемые сети передачи данных
- •1.2 Архитектура корпоративной сети передачи данных
- •1.3 Введение в технологию подсетей и ее обоснование
- •1.4 Применение технологии VLSM
- •1.5 Суммирование маршрутов
- •1.6 Проектирование масштабируемого адресного пространства
- •2 Принципы маршрутизации
- •2.1 Определение маршрутизации
- •2.1.1 Маршрутизируемые и маршрутизирующие протоколы
- •2.1.2 Основные функции маршрутизаторов
- •2.2 Концептуальные основы маршрутизации
- •2.2.1 Таблицы маршрутизации
- •2.2.2 Административное расстояние
- •2.2.3 Метрики маршрутов
- •2.2.4 Построение таблицы маршрутизации
- •2.3 Механизмы маршрутизации
- •2.3.1 Прямое соединение
- •2.3.2 Статическая маршрутизация
- •2.3.3 Настройка статических маршрутов
- •2.3.4 Использование «плавающих» статических маршрутов
- •2.3.5 Маршрутизация по умолчанию
- •2.4 Проверка и устранение ошибок в статических маршрутах
- •3 Принципы динамической маршрутизации
- •3.1 Операции динамической маршрутизации
- •3.1.1 Стоимость маршрута
- •3.2 Внутренние и внешние протоколы маршрутизации
- •3.2.1 Понятие автономной системы и домена маршрутизации
- •3.2.2 IGP – протоколы внутреннего шлюза
- •3.2.3 EGP – протоколы внешнего шлюза
- •3.3 Обзор классовых протоколов маршрутизации
- •3.3.1 Суммирование маршрутов при классовой маршрутизации
- •3.3.2 Суммирование маршрутов в разобщенных классовых сетях
- •3.4 Обзор бесклассовых протоколов маршрутизации
- •3.4.1 Суммирование маршрутов при бесклассовой маршрутизации
- •3.4.2 Суммирование маршрутов в разобщенных классовых сетях
- •3.5 Категории алгоритмов маршрутизации
- •3.5.1 Особенности дистанционно-векторных протоколов
- •3.5.2 Маршрутизация по состоянию канала
- •3.5.3 Гибридные протоколы маршрутизации
- •3.6 Конфигурирование протокола маршрутизации
- •4 Дистанционно-векторная маршрутизация
- •4.1 Дистанционно-векторный алгоритм
- •4.1.1 Дистанционно-векторный алгоритм для протокола IP
- •4.2 Маршрутизация по замкнутому кругу
- •4.3 Максимальное количество транзитных переходов
- •4.4 Применения принципа расщепления горизонта
- •4.5 Обратное обновление
- •4.6 Таймеры удержания информации
- •4.7 Механизм мгновенных обновлений
- •5 Протокол RIP
- •5.1 Настройка протокола RIP
- •5.2 Протокол RIP v1
- •5.2.1 Заголовок и поля протокола RIP v1
- •5.2.2 Команда – 1 байт
- •5.2.3 Версия – 1 байт
- •5.2.4 Неиспользуемые поля – 2 байта
- •5.2.5 Идентификатор семейства адресов – 2 байта
- •5.2.6 IP адрес – 4 байта
- •5.2.6 Метрика – 4 байта
- •5.3 Использование команды ip classless
- •5.4 Недостатки протокола RIP v1
- •5.5 Протокол RIP v2
- •5.5.1 Заголовок и поля протокола RIP v2
- •5.5.2 Тег маршрута – 2 байта
- •5.5.3 Маска подсети – 4 байта
- •5.5.4 Следующая пересылка – 4 байта
- •5.6 Аутентификация в протоколе RIP v2
- •5.6.1 Настройка аутентификации для протокола RIP
- •5.7 Суммирование маршрутов в протоколе RIP
- •5.7.1 Распространение маршрута по умолчанию
- •5.8 Расширенная настройка протокола RIP
- •5.8.1 Таймеры протокола RIP
- •5.8.2 Совместное использование в сети протокола RIP v1 и v2
- •5.8.3 Распределение нагрузки в протоколе RIP
- •5.8.4 Настройка протокола RIP для работы в сетях NBMA
- •5.8.5 Механизм инициированных обновлений в протоколе RIP
- •5.9 Тестирование и устранение ошибок в работе протокола RIP
- •6 Протокол EIGRP
- •6.1 Алгоритм диффузионного обновления
- •6.2 Преимущества протокола EIGRP
- •6.3 Автономная система протокола EIGRP
- •6.4 База данных протокола EIGRP
- •6.4.1 Таблица соседства
- •6.4.2 Таблица топологии
- •6.5 Метрика протокола EIGRP
- •6.6 Функционирование протокола EIGRP
- •6.6.1 Надежность передачи пакетов протокола EIGRP
- •6.6.2 Разрыв соседских отношений
- •6.6.3 Запланированное отключение
- •6.6.5 Меры обеспечения стабильности протокола EIGRP
- •6.7 Алгоритм DUAL
- •6.7.1 Работа алгоритма DUAL
- •6.8 Механизм ответов на запросы
- •7 Конфигурирование и тестирование протокола EIGRP
- •7.1 Запуск протокола EIGRP
- •7.2 Настройка аутентификации в протоколе EIGRP
- •7.3 Суммирование маршрутов в протоколе EIGRP
- •7.4 Настройка маршрута по умолчанию в протоколе EIGRP
- •7.5 Распределение нагрузки в протоколе EIGRP
- •7.6 Расширенная настройка протокола EIGRP
- •7.6.1 Таймеры протокола EIGRP
- •7.6.2 Изменение административного расстояния протокола EIGRP
- •7.6.3 Изменение весовых коэффициентов протокола EIGRP
- •7.6.4 Настройка протокола EIGRP для сетей NBMA
- •7.6.5 Использование EIGRP пропускной способности каналов связи
- •7.6.6 Идентификация маршрутизаторов в протоколе EIGRP
- •7.7 Тестирование и устранение ошибок в работе протокола EIGRP
- •8 Использование протокола EIGRP в масштабируемых сетях
- •8.1 Масштабируемость. Проблемы и решения
- •8.2 Использование суммарных маршрутов
- •8.3 Использование тупиковых маршрутизаторов
- •8.4 Использование протокола EIGRP в современных условиях
- •9 Протоколы маршрутизации по состоянию канала
- •9.1 Алгоритм «кратчайшего пути» Дейкстры
- •10 Протокол OSPF
- •10.1 Характеристики протокола OSPF
- •10.1.1 Групповая рассылка обновлений состояния каналов
- •10.1.2 Аутентификация
- •10.1.3 Быстрота распространения изменения в топологии
- •10.1.4 Иерархическое разделение сети передачи данных
- •10.2 База данных протокола OSPF
- •10.2.1 Таблица соседства
- •10.2.2 Таблица топологии
- •10.3 Метрика протокола OSPF
- •10.4 Служебные пакеты протокола OSPF
- •10.4.1 Пакет приветствия
- •10.4.2 Суммарная информация о таблице топологии
- •10.4.3 Запрос на получение информации о топологическом элементе
- •10.4.4 Обновление информации о топологических элементах
- •10.4.5 Подтверждение о получении
- •10.5 Процесс установки соседских отношений
- •10.5.1 Поиск соседей
- •10.5.2 Обмен топологической информацией
- •11 Настройка протокола OSPF в одной зоне
- •11.1 Запуск протокола OSPF
- •11.2 Управление значением идентификатора маршрутизатора OSPF
- •11.3 Настройка аутентификации в протоколе OSPF
- •11.3.1 Проверка функционирования аутентификации
- •11.4 Настройка маршрута по умолчанию в протоколе OSPF
- •11.5 Распределение нагрузки в протоколе OSPF
- •11.6 Расширенная настройка протокола OSPF
- •11.6.1 Таймеры протокола OSPF
- •11.6.2 Изменение административного расстояния протокола OSPF
- •11.7 Тестирование и устранение ошибок в работе протокола OSPF
- •12 Работа протокола OSPF в сетях различных типов
- •12.1 Работа протокола OSPF в сетях «Точка-Точка»
- •12.2 Работа протокола OSPF в широковещательных сетях
- •12.2.1 Правила выбора DR и BDR маршрутизаторов
- •12.3 Работа протокола OSPF в сетях NBMA
- •12.4 Режимы работы протокола OSPF в сетях NBMA
- •12.5 Режимы работы протокола OSPF в сетях Frame Relay
- •12.5.1 Нешироковешательный режим
- •12.5.2 Многоточечный режим
- •12.5.3 Использование подинтерфейсов
- •12.6 Проверка работы протокола OSPF в сетях различных типов
- •13 Работа протокола OSPF в нескольких зонах
- •13.1 Типы маршрутизаторов OSPF
- •13.1.1 Внутренние маршрутизаторы
- •13.1.2 Магистральные маршрутизаторы
- •13.1.3 Пограничные маршрутизаторы
- •13.1.4 Пограничные маршрутизаторы автономной системы
- •13.2 Типы объявлений о состоянии каналов
- •13.2.1 Структура заголовка сообщения LSA
- •13.2.2 Объявление состояния маршрутизатора (Тип 1)
- •13.2.3 Объявление состояния сети (Тип 2)
- •13.2.4 Суммарные объявления о состоянии каналов (Тип 3 и 4)
- •13.2.5 Объявления внешних связей (Тип 5 и 7)
- •13.3 Построение таблицы маршрутизации протоколом OSPF
- •13.3.1 Типы маршрутов протокола OSPF
- •13.3.2 Расчет метрики внешних маршрутов
- •13.4 Суммирование маршрутов протоколом OSPF
- •13.4.1 Суммирование межзональных маршрутов
- •13.4.2 Суммирование внешних маршрутов
- •13.4.3 Отображение внешних суммарных маршрутов
- •14 Специальные типы зон протокола OSPF
- •14.1 Типы зон протокола OSPF
- •14.1.1 Правила тупиковых зон
- •14.2 Тупиковые зоны протокола OSPF
- •14.2.1 Настройка тупиковой зоны
- •14.3 Полностью тупиковые зоны протокола OSPF
- •14.3.1 Настройка полностью тупиковой зоны
- •14.4 Таблицы маршрутизации в тупиковых зонах
- •14.5 Не совсем тупиковые зоны протокола OSPF
- •14.5.1 Настройка не совсем тупиковой зоны
- •14.5.2 Настройка полностью тупиковой зоны NSSA
- •14.6 Проверка функционирования специальных зон протокола OSPF
- •15 Виртуальные каналы в протоколе OSPF
- •15.1 Настройка виртуальных каналов
- •15.1.2 Примеры использования виртуальных каналов
- •15.2 Проверка функционирования виртуальных каналов
- •16 Перераспределение маршрутной информации
- •16.1 Понятие перераспределения маршрутной информации
- •16.2 Понятие метрического домена
- •16.3 Маршрутные петли
- •16.3.1 Односторонние перераспределение маршрутной информации
- •16.3.2 Двухсторонние перераспределение маршрутной информации
- •16.3.3 Протоколы маршрутизации подверженные образованию маршрутных петель
- •17 Совместная работа нескольких протоколов маршрутизации
- •17.2 Настройка базового перераспределения маршрутной информации
- •17.2.1 Метрика, присваиваемая перераспределяемым маршрутам
- •17.3 Настройка перераспределения маршрутной информации из присоединенных и статических маршрутов
- •17.4 Настройка перераспределения маршрутной информации в протокол RIP
- •17.5 Настройка перераспределения маршрутной информации в протокол EIGRP
- •17.6 Настройка перераспределения маршрутной информации в протокол OSPF
- •18 Управление трафиком маршрутных обновлений
- •18.1 Использование пассивных интерфейсов
- •18.1.1 Настройка пассивных интерфейсов
- •18.2 Фильтрация маршрутной информации, передаваемой между маршрутизаторами
- •18.2.1 Фильтрация сетей получателей по IP адресу сети
- •18.2.2 Фильтрация сетей получателей по длине префикса
- •18.2.3 Использование списков доступа и списков префиксов при фильтрации маршрутной информации
- •18.3 Фильтрация маршрутной информации в процессе перераспределения маршрутной информации
- •19 Маршрутные карты
- •19.1 Понятие маршрутных карт
- •19.2 Настройка маршрутной карты
- •19.3 Использование маршрутных карт при перераспределении маршрутной информации
- •19.4 Проверка конфигурации маршрутных карт
- •20 Маршрутизация по политикам
- •20.1 Понятие маршрутных политик
- •20.2 Настройка маршрутизации по политикам
- •20.3 Пример маршрутизации по политикам
- •20.4 Проверка маршрутизации по политикам
- •21 Обзор протокола BGP
- •21.1 Автономные системы
- •21.2 Использование протокола BGP
- •21.2.1 Когда используется протокол BGP
- •21.2.2 Когда не следует использовать протокол BGP
- •22 Терминология и концепции протокола BGP
- •22.1 Характеристики протокола BGP
- •22.2 Таблицы протокола BGP
- •22.3 Одноранговые устройства или соседи BGP
- •22.4 Маршрутизация по политикам
- •22.5 Атрибуты протокола BGP
- •22.5.1 Содержимое сообщения обновления протокола BGP
- •22.5.2 Стандартные и опциональные атрибуты
- •22.5.3 Атрибут «Путь к AS»
- •22.5.4 Атрибут «Узел следующего перехода»
- •22.5.5 Атрибут «Локальный приоритет»
- •22.5.6 Атрибут MED
- •22.5.7 Атрибут «Отправитель»
- •22.5.7 Атрибут «Сообщество»
- •22.5.8 Атрибут «Вес»
- •23 Работа протокола BGP
- •23.1 Типы сообщений протокола BGP
- •23.1.1 Состояния BGP соседей
- •23.2 Процесс принятия решения при выборе пути
- •23.2.1 Выбор нескольких путей
- •23.3 CIDR маршрутизация и суммирование маршрутов
- •24 Настройка протокола BGP
- •24.1 Одноранговые группы
- •24.2 Основные команды протокола BGP
- •24.2.1 Модификация атрибута NEXT-HOP
- •24.2.2 Описание объединенного адреса в BGP таблице
- •24.2.3 Перезапуск протокола BGP
- •24.3 Проверка работоспособности протокола BGP
- •25 Множественная адресация
- •25.1 Типы множественной адресации
- •Заключение
- •Словарь терминов
- •Список использованных источников

14.2.1 Настройка тупиковой зоны
Чтобы настроить зону OSPF как тупиковую, необходимо воспользоваться командой area stub. Синтаксис команды приводится в примере 14.1.
Пример 14.1 – Синтаксис команды area stub
(config-router)# area area-id stub (config-router)# no area area-id stub
router ospf 200
network 172.16.32.0 0.0.31.255 area 1
network 172.16.96.0 0.0.31.255 area 0 area 1 stub
Зона 1 (Stub) |
|
Зона 0 (Backbone) |
R1 |
R2 |
R3 |
router ospf 200
network 172.16.32.0 0.0.31.255 area 1 area 1 stub
Рисунок 14.2 – Пример настройки тупиковой зоны
На рисунке 14.2 Зона 1 определена как тупиковая зона протокола OSPF. Необходимо обратить особое внимание на то, что команда area stub применена в настройках всех маршрутизаторов принадлежащих зоне. Маршрутизатор R2, который выступает в роли ABR маршрутизатора, автоматически распространяет в тупиковую зону маршрут, указывающий на него, как маршрут по умолчанию.
14.3 Полностью тупиковые зоны протокола OSPF
Полностью тупиковые зоны не определены в RFC 2328, а разработаны компанией Cisco. Полностью тупиковые зоны позволяют еще большее сократить количество записей в таблице топологии внутренних маршрутизаторов зоны. Полностью тупиковые зоны не принимают рассылку не только внешних, но и межзональных сообщений LSA. Все внешние и межзональные маршруты заменяются пограничным маршрутизатором зоны на маршрут по умолчанию.
За счет блокирования внешних и межзональных маршрутов в таблицах маршрутизации полностью тупиковой зоны присутствуют только внутризональные маршруты и маршрут по умолчанию на ABR маршрутизатор, вы-
247

бранный всеми маршрутизаторами в зоны как шлюз «последней надежды» для всех маршрутов за пределами зоны.
ABR маршрутизатор производит автоматическую рассылку маршрута по умолчанию для всех остальных маршрутизаторов зоны. Процесс распространения топологической информации в полностью тупиковой зоне изображен на рисунке 14.3.
Зона 1 (Totally stub ) |
Зона 0 (Backbone) |
|
|
Зона 2 (Standard) |
|
Internal |
ABR |
ASBR |
|
ABR |
Internal |
|
LSA |
3 |
LSA |
3 |
LSA 3 |
|
Default |
|
|
|
|
|
LSA |
5 |
LSA |
5 |
LSA 5 |
Внешняя AS
Рисунок 14.3 – Распространение маршрута по умолчанию в полностью тупиковую зону
Полностью тупиковые зоны минимизируют маршрутную информацию в большей степени, чем тупиковые зоны, тем самым они повышают стабильность и упрощают масшабируемость сетей передачи данных. Использование полностью тупиковых зон на маршрутизаторах Cisco предпочтительнее, чем использование тупиковых зон.
14.3.1 Настройка полностью тупиковой зоны
Чтобы настроить зону как полностью тупиковую, необходимо воспользоваться уже известной командой area stub на всех внутренних маршрутизаторах зоны, а на ABR маршрутизаторе добавить к команде area stub ключевое слово no-summary. Необходимо помнить, что данное ключевое слово применяется только на ABR маршрутизаторе.
Для изменения метрики автоматически распространяемого маршрута по умолчанию можно воспользоваться командой area default-cost. Синтаксис команды приводится в примере 14.2.
Пример 14.2 – Синтаксис команды area default-cost
(config-router)# area area-id default-cost cost
(config-router)# no area area-id default-cost cost
248

Описание параметров команды area default-cost приводиться в таблице
14.1.
Таблица 14.1 – Параметры команды area default-cost
Параметр |
Описание |
area-id |
Номер зоны OSPF, которой принадле- |
cost |
жит описанная сеть. |
Метрика маршрута. |
Данная команда применяется только для изменения метрики автоматически сгенерированных маршрутов по умолчанию для тупиковых, полностью тупиковых и NSSA зон протокола OSPF.
|
router ospf 200 |
|
area 1 stub no-summary |
|
area 1 default-cost 5 |
Зона 1 (Stub) |
Зона 0 (Backbone) |
|
R1 |
R3 |
R4 |
|
R2 |
router ospf 200 |
router ospf 200 |
area 1 stub |
area 1 stub no-summary |
|
area 1 default-cost 10 |
Рисунок 14.4 – Пример настройки полностью тупиковой зоны
На рисунке 14.4 приведен пример конфигурации совсем тупиковой зоны. Все межзональные или внешние маршруты, входящие в зону 1 из магистральной зоны, меняются на маршрут по умолчанию. Метрика маршрута по умолчанию через маршрутизатор R1 равняется 5, а через маршрутизатор R2 10. Применение двух маршрутизаторов в качестве ABR маршрутизаторов полностью тупиковой зоны в данном случае не противоречит правилу об одной точке выхода из тупиковой зоны.
В данном случае была применена команда area default-cost, которая назначает различные метрики для маршрутов по умолчанию, следовательно, пока работают оба ABR маршрутизатора, трафик за пределы зоны будет передаваться только по маршруту с меньшей метрикой, а это не противоречит правилу, так как из зоны используется только одна точка выхода. Как только маршрутизатор с меньшей метрикой становиться недоступен, трафик будет отправляться по резервному маршруту по умолчанию, а как только основной
249