- •1 Кинематическо – силовой расчёт привода
- •1. Электродвигатель; 2. Передача с зубчатым ремнем; 3. Редуктор; 4. Муфта; 5. Приводной вал транспортёра с тяговым барабаном; 6.Плита или рама 7. Лента транспортёра
- •Геометрические характеристики электродвигателя, мм
- •2 Проектный расчет конической зубчатой передачи
- •3 Расчет открытой зубчатой ременной передачи привода
- •4 Эскизное проектирование редуктора
- •5 Конструирование зубчатого колеса
- •6 Расчет шпоночных соединений зубчатых колес с валами привода
- •6.1 Определяем прочность соединения
- •7 Расчет на статическую прочность и выносливость тихоходного вала редуктора
- •Исходные данные
- •8 Расчёт на прочность подшипниковых опор валов редуктора
- •Конструирование подшипниковых узлов редуктора
- •10 Конструирование корпусных деталей редуктора
- •11 Выбор системы смазки редуктора и смазочных материалов
- •12 Выбор стандартной муфты привода
- •13 Выбор предельных отклонений размеров, посадок, шероховатостей, допусков формы и расположения поверхностей при разработке рабочих чертежей деталей привода
- •14 Разработка эскизной компоновки привода
- •15 Конструирование опорной рамы привода
- •16 Краткие рекомендации по сборке редуктора
- •17 Конструирование приводного барабана
- •Заключение
2 Проектный расчет конической зубчатой передачи
Исходные данные:
Вращающий момент на тихоходном (выходном) валу Т2 = Ттих = 324,87;
Круговая частота вращения тихоходного вала n2 = nтих = 48,5мин-1;
Передаточное отношение U = iред = 4,87;
Время работы (долговечность или ресурс) L = 20000 час;
Номер типового режима нагружения NR = 0;
Коэффициент
перегрузки
;
где - отношение максимального (пускового) момента на валу электродвигателя привода к номинальному моменту Кп = 2,2;
Наличие реверса нет;
Тип передачи прямозубая, β = 0.
Выбор материала шестерни и колеса
Считая
проектируемую передачу средненагруженной
и выпускаемой малой серией, выбираем
согласно рекомендациям работы в качестве
материала для изготовления шестерни и
колеса сталь 45 с термической обработкой
– улучшение. При этом для материала
шестерни назначаем большую твердость
,
чем для материала колеса
.
Средние
твердости материалов шестерни и колеса
в этом случаи составляют
и
.
Пределы их текучести равны
Т1
= 650 МПа и
Т2
= 540 МПа, а допустимые размеры сечений
заготовок шестерни
D = 80 мм. и колеса S = 80 мм.
Определяем доп
ускаемые
напряжения в передачи
Допускаемые контактные напряжения шестерни и колеса
В соответствии с рекомендациями [2] таблице 2 определяем длительные пределы контактной выносливости материалов шестерни и колеса
(17)
(18)
При значение коэффициентов безопасности при расчетах на контактную выносливость SH1= SH2 = 1,1.
Исходя из формулы
рассчитываем базовые числа циклов
где
подставляется в единицах твердости НВ
(19)
(20)
Согласно формуле
,
вычислим эквивалентные числа циклов
нагружения
где
и
,
число циклов нагружения зубьев за срок
службы колеса;
–круговая частота
вращения шестерни;
n3 = 1 - число вхождений в зацепление с рассчитываемым колесом;
коэффициент
эквивалентности, учитывающий переменность
нагрузки при расчетах на контактную
выносливость, определяется для типовых
режимов нагружения при
в соответствии с рекомендациями [2]
таблице по таблице 3.
(21)
. (22)
Рассчи
тываем
коэффициент долговечности
(23)
(24)
Принимаем
.
Согласно рекомендациям [2] раздела 2.2.1 предварительно принимаем следующие значения коэффициентов, учитывающих шероховатость сопряженных поверхностей зубьев и влияние окружной скорости в передаче
и
.
Рассчитываем допускаемые контактные напряжения шестерни и колеса
(25)
. (26)
Допускаемое контактное напряжение в передаче
(27)
Допускаемые напряжения изгиба зубьев шестерни и колеса
В соответствии с рекомендациями [2] по таблице 4 определяем длительные пределы изгибной выносливости материалов шестерни и колеса.
(28)
(29)
Значе
ния
коэффициентов безопасности при расчетах
на контактную выносливость принимаем
в соответствии с рекомендациями [2] по
таблице 4:
![]()
Базовые числа циклов для шестерни и колеса одинаковы и составляют
![]()
2.2.6 Определяем эквивалентные числа циклов нагружения
(30)
(31)
где
коэффициент эквивалентности при
,
в соответствии с рекомендациями [2]
принимается по таблице 4.
2.2.7 Определяем коэффициенты долговечности
(32)
так как
,
то принимаем![]()
Так как коэффициент долговечности и для шестерни и для колеса равен 1, то принимаем :
;
;
;
.
2.2.8 Определяем допускаемые напряжения изгиба зубьев шестерни и колеса
(33)
где
коэффициент безопасности, в соответствии
с рекомендациями [2] принимается по
таблице 4
![]()
![]()
Определяем
допускаемые напряжения при максимальной
(пиковой) нагрузке
(34)
где
меньший из пределов
текучести материала шестерни или колеса.
2.2.10 Определяем
допускаемое напряжение изгиба
и![]()
(35)
где
коэффициент запаса
прочности;
коэффициент влияния
частоты приложения пиковой нагрузки,
в случаи единичных перегрузок, принимаем
;
для нормализованных и улучшенных
зубчатых колес
![]()
.
2.3 Вычисление основных конструктивных параметров передачи
2.3.1 Определим примерный диаметр внешней делительной окружности
мм,
(36)
где
вращающий момент на валу шестерни в Нм;

коэффициент полезного действия конической
передачи;
передаточное
число;
и
числа зубьев шестерни и колеса;
К – эмпирический коэффициент, принимаем в соответствии с рекомендациями [2] по таблице 6 К = 30;
коэффициент
характеризующий при расчетах на
контактную выносливость особенности
конструкции конической передачи, в
соответствии с рекомендациями [2]
принимается по таблице 6:
; (37)
Нм;
(38)
(39)
2.3.2 Определяем значение окружной скорости на среднем делительном диаметре шестерни
; (40)
.
В соответствии с
рекомендациями [2] по таблице 7 назначаем
7 степень точности (
).
Диаметр внешней делительной окружности шестерни
; (41)
; (42)
2.3.4 Для определения
рассчитаем
коэффициент шестерни
; (43)

.
Определяем значение коэффициента
для конических колес с прямыми зубьями,
в соответствии с рекомендациями [2] по
таблице 8.
;
.
Определяем значение коэффициента нагрузки
; (44)
.
2.3.7 Уточняем значение диаметра внешней делительной окружности шестерни
; (45)
.
Число зубьев шестерни и колеса
2.3.8.1 Определяем модуль передачи
; (46)
;(47)
;
;
принимаем
;
применяем из [1] по
таблице 2.9;
коэффициент
учитывающий неравномерность распределения
напряжений
у оснований зубьев по ширине зубчатого
венца
; (48)
;
;
;
b – ширина зубчатого венца
; (49)
.
2.3.8.2 Определим внешнее конусное расстояние
; (50)
.
2.3.8.3 Определим угол делительного конуса шестерни
; (51)
.
2.3.8.4 Определяем числа зубьев
Для шестерни
;(52)
;
Принимаем
;
Для колеса
;(53)
;
Принимаем
.
Фактическое передаточное число
. (54)
2
.4.1
Определяем погрешность передаточного
числа
. (55)
2.4.2 Определяем внешний торцевой модуль (окружной)
; (56)
.
2.4.3 Определяем нормальный модуль в среднем сечении зуба по ширине зубчатого венца
; (57)
;
Принимаем
.
2.4.4 Уточняем внешний торцевой модуль
; (58)
.
2.5 Определяем окончательные значения размеров передачи
2.5.1 Определяем углы делительных конусов шестерни и колеса
; (59)
;
. (60)
2.5.2 Определяем внешнее конусное расстояние
; (61)
.
2.5.3
Определяем ширину зубчатого венца
; (62)
.
2.5.4 Определяем диаметры внешних делительных окружностей зубьев шестерни и колеса
; (63)
;
; (64)
.
2.5.5 Определяем диаметры внешних окружностей вершин зубьев шестерни и колеса
; (65)
коэффициенты
радиального смещения для шестерни и
колеса
; (66)
; (67)
;(68)
.
2.5.6 Определяем среднее конусное расстояние
; (69)
. (70)
2.5.7 Определяем диаметры средних делительных окружностей зубьев шестерен и колеса
; (71)
;
; (72)
.
2
.6
Определяем размеры заготовок шестерни
и колеса
Для шестерни
; (73)
;
. (74)
Для колеса
;
(75)
;
;
; (76)
;
.
Неравенства для колеса и шестерни верны. Следовательно, выбранный материал колеса и шестерни, и способ их термической обработки оставляем без изменений.
2.7 Определяем силы, действующие в зацеплении передачи
2.7.1 Определяем окружную силу на диаметре средней делительной окружности шестерни
; (77)
.
2.7.2 Определяем радиальную силу на шестерне
; (78)

.
2.7.3 Определяем осевую силу на шестерне
; (79)
.
2.8 Проверочный расчет передачи на усталостную контактную прочность
2.8.1 Определяем действительное значение окружной скорости в передачи
; (80)
;
; (81)
.
2.8.2 Проверяем неравенство
; (82)
; (83)
.
2.9 Провер
очный
расчет передачи на усталостную прочность
по напряжениям изгиба зубьев ее колес
; (84)
;
;
(85)
в соответствии с
рекомендациями [2] табл.13 принимаем, при
,
твердости
иV
= 0,64 м/с
м/с.
![]()
; (86)
;
.
2.9.1 Определяем значение коэффициентов
; (87)
;
; (88)
;
; (89)
;

; (90)
.
2.10 Проверочный расчет передачи на прочность зубьев при действии пиковой нагрузки
;
(91)
;
; (92)
;
; (93)
.
