
- •1.Биология как наука. Связь биологии с другими науками. Место и задачи биологии и подготовке врача. Новая биология.
- •2.Человек как объект биологии. Значение биологического и социального наследства для медицины.
- •3. Развитие понятия жизни на современном этапе. Определения понятия «Жизнь». Фундаментальные свойства живого.
- •4. Происхождение жизни: гипотеза панспермии и абиогенного происхождения жизни. Главные этапы возникновения и развития жизни.
- •5. Химический состав живых организмов
- •6. Биологическая роль воды
- •Биологическое значение воды
- •7.Эволюционно - обусловленные уровни организации жизни.
- •8.Типы клеточной организации. Строение про- и эукариотических клеток.
- •10. . Клетка – элементарная биологическая система. Клеточная теория т. Шванна и м. Шлейдена, история, её основные положения. Современное состояние клеточной теории. Значение клеточной теории.
- •Клеточная теория
- •Современная клеточная теория
- •Активный и пассивный транспорт.
- •Симпорт, антипорт и унипорт
- •Работа натрий-калиевой атФазы как пример антипорта и активного транспорта
- •12. Ядро. Строение и функции.
- •Синдром Цельвегера.
- •16.Нуклеотидные последовательности в геноме эукариот
- •19. Репарация днк
- •20.Регуляция клеточной активности. Гибель клеток – как нормальный физиологический процесс
- •21. 22.Размножение. Формы и способы размножения. Половое размножение, его эволюционное значение
- •Половое размножение
- •24. Морфофункциональная организация зрелых половых клеток
- •1.Яйцеклетка
- •2.Сперматозоид
- •25. Оплодотворение, фазы оплодотворения, биологическое значение оплодотворения и поведение хромосом в процессе оплодотворения.
- •1.1. Оплодотворение.
- •26. Партеногенез.
- •27. Типы определения пола.
Синдром Цельвегера.
Синдром Цельвегера объединяет группу генетически гетерогенных состояний. К клиническим проявлениям синдрома Цельвегера могут приводить мутации в генах пероксинов 1,2,3,5,6 и 12. Все варианты СЦ наследуются по аутосомно-рецессивному типу.
Первые симптомы отмечаются с рождения. Для больных характерна внутриутробная гипотрофия (вес при рождении не превышает 2500 г), дисморфизм в строении лица и черепа — увеличение размеров лба, монголоидный разрез глаз, периорбитальная полнота тканей, короткий вздернутый нос, микрогнатия. Среди наиболее типичных признаков: резкая мышечная гипотония, доходящая до атонии, и поликистоз почек. У всех больных отмечаются полиморфные пороки развития головного мозга. Часто диагностируется полимикрогирия, лизэнцефалия, агенезия мозолистого тела, очаги демиелинизации в белом веществе мозга, гидроцефалия. В ряде случаев выявляется патология глаз в виде врожденных катаракт и глауком, а также пороки сердца и наружных половых органов. Для заболевания характерна длительная желтуха и симптомы надпочечниковой недостаточности в первые месяцы жизни. У всех детей отмечается грубая задержка раннего психомоторного развития и снижение продолжительности жизни. Большинство больных погибает в течение первого года.
Лизосомные болезни накопления – это тяжелые наследственные заболевания обмена веществ, связанные с отсутствием лизосомальных ферментов. Недостаток этих ферментов приводит к тому, что макромолекулы (сложные комплексы белков, липидов и углеводов) не расщипляются и накапливаются в лизосомах. В результате сначала нарушается работа, клетки, затем тканей, а затем всего организма. Частота заболеваний этой группой генетических болезней составляет 1:5000 новорожденных. В зависимости от самого субстрата и группы поврежденных ферментов различают: сфинголипидозы (ганглиозидоз, болезнь Крабе, болезнь Гоше, метахроматическая лейкодистрофия, , болезнь Фарбера, болезнь Фабри, , болезнь Шиндлера, болезнь Нимана-Пика); муколипидозы и гликопротеинозы (цероидный липофусциноз, болезнь Вольмана, муколипидоз маннозидоз); мукополисахаридозы (синдром Гурлера, синдром Хантера, синдром Шейе, синдром Сан-Филиппо, синдром Морото -_Лами, синдром Моркио, синдром Слая).
Диагноз лизосомного заболевания можно заподозрить на основе внешних признаков: скелетные аномалии, грубые черты лица, а также умственной отсталости, поражений внутренних органов и систем. Манифестация этих симптомов может произойти как в период новорожденности, так и в уже зрелом возрасте.
Одно из самых известных лизосомных заболеваний – болезнь Гоше. В основе лежит незаменимого фермента бета-глюкоцереброзидазы, в результате чего мембранный жир накапливается в клетках Гоша с нарушением функций внутренних органов.
Если раньше диагноз «Болезнь Гоше» считался практически приговором, то сейчас при применении заместительной ферментотерапии имиглюцеразой у больных появилась возможность достигнуть нормальной жизни. При регулярном приеме препарата размеры печени и селезенки уменьшаются практически до нормального состояния, гемограмма нормализуется, изчезают боли в костях.
15. Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализациюгенетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.
В молекуле ДНК присутствуют нуклеотиды четырех типов: дезоксиаденозин монофосфат (dAMP), дезоксигуанозинмонофосфат (dGMP), дезокситимидинмонофосфат(dТМР),дезоксицитадинмонофосфат(с!СМР). Номенклатура азотистых оснований, нуклеозидов и мононуклеотидов молекулы ДНК представлена в таблице.
ДНК имеет форму спирали, в которой основания разных цепей связаны между собой водородными связями. Цепи ДНК способны разделяться с помощью специальных ферментов и служить матрицами при синтезе дочерних молекул. Важнейшее свойство ДНК — комплементарность ее цепей. Это означает, что против аденина в одной из цепей всегда стоит тимин в другой цепи, гуанин всегда соединен с цитозином. Комплементарные пары аденин и тимин соединены двумя водородными связями, а гуанин с цитозином тремя водородными связями.
Помимо водородных связей между основаниями разных цепей стабильность двойной спирали ДНК обеспечивают гликозидные связи между азотистыми основаниями и остатками дезоксирибозы, а также фосфодиэфирные связи между двумя соседними остатками дезоксирибозы.
ДНК может существовать в виде нескольких форм, различающихся числом пар оснований на виток, утлом вращения между соседними парами оснований, расстоянием между парами оснований и диаметром спирали. В условиях in vivo наиболее частой является праюсторонняя В-форма, в которой одна цепь повернута вокруг другой по часовой стрелке. Имеется также и левосторонняя Z-форма.
Какие же из перечисленных выше структурных и функциональных особенностей молекулы ДНК позволяют ей хранить и передавать наследственную информации от клетки к клетке, от поколения к поколению, обеспечивать новые комбинации признаков у потомства?
1. Стабильность. Она обеспечивается водородными, гликозидными и фосфодиэфирными связями, а также механизмом репарации спонтанных и индуцированных повреждений;
2. Способность к репликации. Благодаря этому механизму в соматических клетках сохраняется диплоидное число хромосом. Схематично псе перечисленные особенности ДНК как генетической молекулы изображены на рисунке.
3. Наличие генетического кода. Последовательность оснований в ДНК с помощью процессов транскрипции и трансляции преобразуется в последовательность аминокислот в полипептидной цепи; 4. Способность к генетической рекомбинации. Благодаря этому механизму образуются новые сочетания сцепленных генов.
Передача генетической информации в клетке основана на матричных процессах (репликации, транскрипции, трансляции). Синтез дочерней цепи (репликация) молекулы ДНК происходит по матрице одной из двух родительских цепей с образованием новой двухиепочечной молекулы ДНК. Синтез молекулы РНК совершается в процессе транскрипции ДНК по матрице одной из двух цепей ДНК. Такая матричная (информационная) РНК может рассматриваться как посредник между ДНК и белком. Далее при синтезе белков генетическая информация, закодированная в последовательности триплетов азотистых оснований (канонов), транслируется в аминокислотную последовательность полипептидных цепей. Остановимся кратко на каждом из этих процессов,
Репликация. Во время репликации происходит расхождение двух цепей ДНК, и каждая из них служит матрицей для синтеза дочерней цепи. Такой способ репликации называется полуконсервативным. При этом дезоксирибонуклеотиды встраиваются в дочернюю цепь согласно правилу комплементарности азотистых оснований (А — Т, G — С). Вновь образованная молекула состоит из одной родительской и одной дочерней цепи ДНК. Образование дочерних хромосом происходит на стадии синтеза (S) в интерфазе между митотическими делениями и перед первым делением мейоза, В анафазе удвоенные хромосомы расходятся по дочерним клеткам. Таким образом, без процесса репликации невозможно сохранение диплоидного числа хромосом в соматических клетках и образование гаплоидного набора хромосом в половых клетках после двух делений мейоза. Однако при делении клеток происходит не только сохранение числа хромосом, но и воспроизведение последовательности азотистых оснований в молекулах ДНК, основанное на комплементарностb пар оснований родительской и дочерней цепей ДНК.
Цепи отделяются друг от друга, и каждая служит матрицей для построения комплементарной цепи. В результате синтезируются две молекулы, у каждой из которых одна цепь старая и одна новая. Такой способ репликации ДНК называют полуконсервативным.